Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{277 x^{3}}{1000} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{277 x_{n}^{3}}{1000} + 9 + e^{- x_{n}}}{- \frac{831 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{277 (3.0000000000)^{3}}{1000} + 9 + e^{- (3.0000000000)}}{- \frac{831 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 3.2086374676 LaTeX:  x_{2} =  (3.2086374676) - \frac{- \frac{277 (3.2086374676)^{3}}{1000} + 9 + e^{- (3.2086374676)}}{- \frac{831 (3.2086374676)^{2}}{1000} - e^{- (3.2086374676)}} = 3.1958379271 LaTeX:  x_{3} =  (3.1958379271) - \frac{- \frac{277 (3.1958379271)^{3}}{1000} + 9 + e^{- (3.1958379271)}}{- \frac{831 (3.1958379271)^{2}}{1000} - e^{- (3.1958379271)}} = 3.1957871638 LaTeX:  x_{4} =  (3.1957871638) - \frac{- \frac{277 (3.1957871638)^{3}}{1000} + 9 + e^{- (3.1957871638)}}{- \frac{831 (3.1957871638)^{2}}{1000} - e^{- (3.1957871638)}} = 3.1957871630 LaTeX:  x_{5} =  (3.1957871630) - \frac{- \frac{277 (3.1957871630)^{3}}{1000} + 9 + e^{- (3.1957871630)}}{- \frac{831 (3.1957871630)^{2}}{1000} - e^{- (3.1957871630)}} = 3.1957871630