A coffee with temperature LaTeX:  \displaystyle 163^\circ is left in a room with temperature LaTeX:  \displaystyle 72^\circ . After 4 minutes the temperature of the coffee is LaTeX:  \displaystyle 145^\circ , how long until the coffee is LaTeX:  \displaystyle 125^\circ ?

Newton's law of Cooling states that the change in temperature is directly proportional to the difference between the object's temperature and its surroundings. LaTeX:   \frac{dT}{dt} = k(T(t)-T_{\text{room}}) Using the substitution LaTeX:  \displaystyle y(t)=T(t)-72 and calculating the derivative gives LaTeX:  \displaystyle \frac{dy}{dt}=\frac{dT}{dt} . Calculating the new initial condition using the point LaTeX:  \displaystyle (4, 145) and the substition gives LaTeX:  \displaystyle y(0) = T(0)-72 = 91 . The point LaTeX:  \displaystyle (4, 145) must also be transformed to get LaTeX:  \displaystyle y(4) = T(4)-72 = 145 - 72 = 73 . Substituting both of these into the equation gives the new equaiton LaTeX:  \displaystyle \frac{dy}{dt}=ky which has the solution LaTeX:  \displaystyle y(t) = y(0)e^{kt}=91e^{kt} . Evaluating the function at the point gives LaTeX:  \displaystyle 73=91e^{4k} and isolating the exponential gives LaTeX:  \displaystyle \frac{73}{91}=e^{4k} . Solving for LaTeX:  \displaystyle k gives LaTeX:  \displaystyle k=\frac{\ln{\left(\frac{73}{91} \right)}}{4} . Substuting LaTeX:  \displaystyle k back into the equation gives LaTeX:  \displaystyle y(t) = 91e^{\frac{\ln{\left(\frac{73}{91} \right)}}{4}t} and simplifying gives LaTeX:  \displaystyle y(t) = 91 \left(\frac{73}{91}\right)^{\frac{t}{4}} . Substituting out LaTeX:  \displaystyle y(t) gives LaTeX:  T(t)-72 = 91 \left(\frac{73}{91}\right)^{\frac{t}{4}} \implies\, T(t)= 91 \left(\frac{73}{91}\right)^{\frac{t}{4}} + 72  Using LaTeX:  \displaystyle T gives the equation LaTeX:  \displaystyle 125=91 \left(\frac{73}{91}\right)^{\frac{t}{4}} + 72 . Isolating the exponential gives LaTeX:  \displaystyle \frac{53}{91}=\left(\frac{73}{91}\right)^{\frac{t}{4}} . Taking the natural logarithm of both sides and solving for LaTeX:  \displaystyle t gives LaTeX:  \displaystyle t = \frac{4 \ln{\left(\frac{53}{91} \right)}}{\ln{\left(\frac{73}{91} \right)}}\approx 9.8 minutes.