Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{109 x^{3}}{1000} - 4 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{109 x_{n}^{3}}{1000} + 4 + e^{- x_{n}}}{- \frac{327 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{109 (3.0000000000)^{3}}{1000} + 4 + e^{- (3.0000000000)}}{- \frac{327 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 3.3698181805 LaTeX:  x_{2} =  (3.3698181805) - \frac{- \frac{109 (3.3698181805)^{3}}{1000} + 4 + e^{- (3.3698181805)}}{- \frac{327 (3.3698181805)^{2}}{1000} - e^{- (3.3698181805)}} = 3.3333534302 LaTeX:  x_{3} =  (3.3333534302) - \frac{- \frac{109 (3.3333534302)^{3}}{1000} + 4 + e^{- (3.3333534302)}}{- \frac{327 (3.3333534302)^{2}}{1000} - e^{- (3.3333534302)}} = 3.3329618358 LaTeX:  x_{4} =  (3.3329618358) - \frac{- \frac{109 (3.3329618358)^{3}}{1000} + 4 + e^{- (3.3329618358)}}{- \frac{327 (3.3329618358)^{2}}{1000} - e^{- (3.3329618358)}} = 3.3329617910 LaTeX:  x_{5} =  (3.3329617910) - \frac{- \frac{109 (3.3329617910)^{3}}{1000} + 4 + e^{- (3.3329617910)}}{- \frac{327 (3.3329617910)^{2}}{1000} - e^{- (3.3329617910)}} = 3.3329617910