Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{81 x^{3}}{100} - 6 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{81 x_{n}^{3}}{100} + 6 + e^{- x_{n}}}{- \frac{243 x_{n}^{2}}{100} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{81 (1.0000000000)^{3}}{100} + 6 + e^{- (1.0000000000)}}{- \frac{243 (1.0000000000)^{2}}{100} - e^{- (1.0000000000)}} = 2.9864613748 LaTeX:  x_{2} =  (2.9864613748) - \frac{- \frac{81 (2.9864613748)^{3}}{100} + 6 + e^{- (2.9864613748)}}{- \frac{243 (2.9864613748)^{2}}{100} - e^{- (2.9864613748)}} = 2.2718083058 LaTeX:  x_{3} =  (2.2718083058) - \frac{- \frac{81 (2.2718083058)^{3}}{100} + 6 + e^{- (2.2718083058)}}{- \frac{243 (2.2718083058)^{2}}{100} - e^{- (2.2718083058)}} = 2.0033803240 LaTeX:  x_{4} =  (2.0033803240) - \frac{- \frac{81 (2.0033803240)^{3}}{100} + 6 + e^{- (2.0033803240)}}{- \frac{243 (2.0033803240)^{2}}{100} - e^{- (2.0033803240)}} = 1.9651478409 LaTeX:  x_{5} =  (1.9651478409) - \frac{- \frac{81 (1.9651478409)^{3}}{100} + 6 + e^{- (1.9651478409)}}{- \frac{243 (1.9651478409)^{2}}{100} - e^{- (1.9651478409)}} = 1.9644159395