Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{227 x^{3}}{250} - 3 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{227 x_{n}^{3}}{250} + 3 + e^{- x_{n}}}{- \frac{681 x_{n}^{2}}{250} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{227 (1.0000000000)^{3}}{250} + 3 + e^{- (1.0000000000)}}{- \frac{681 (1.0000000000)^{2}}{250} - e^{- (1.0000000000)}} = 1.7955935825 LaTeX:  x_{2} =  (1.7955935825) - \frac{- \frac{227 (1.7955935825)^{3}}{250} + 3 + e^{- (1.7955935825)}}{- \frac{681 (1.7955935825)^{2}}{250} - e^{- (1.7955935825)}} = 1.5619676404 LaTeX:  x_{3} =  (1.5619676404) - \frac{- \frac{227 (1.5619676404)^{3}}{250} + 3 + e^{- (1.5619676404)}}{- \frac{681 (1.5619676404)^{2}}{250} - e^{- (1.5619676404)}} = 1.5254305684 LaTeX:  x_{4} =  (1.5254305684) - \frac{- \frac{227 (1.5254305684)^{3}}{250} + 3 + e^{- (1.5254305684)}}{- \frac{681 (1.5254305684)^{2}}{250} - e^{- (1.5254305684)}} = 1.5245925737 LaTeX:  x_{5} =  (1.5245925737) - \frac{- \frac{227 (1.5245925737)^{3}}{250} + 3 + e^{- (1.5245925737)}}{- \frac{681 (1.5245925737)^{2}}{250} - e^{- (1.5245925737)}} = 1.5245921399