Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{111 x^{3}}{250} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{111 x_{n}^{3}}{250} + \cos{\left(x_{n} \right)} + 5}{- \frac{333 x_{n}^{2}}{250} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{111 (3.0000000000)^{3}}{250} + \cos{\left((3.0000000000) \right)} + 5}{- \frac{333 (3.0000000000)^{2}}{250} - \sin{\left((3.0000000000) \right)}} = 2.3422447390 LaTeX:  x_{2} =  (2.3422447390) - \frac{- \frac{111 (2.3422447390)^{3}}{250} + \cos{\left((2.3422447390) \right)} + 5}{- \frac{333 (2.3422447390)^{2}}{250} - \sin{\left((2.3422447390) \right)}} = 2.1674663999 LaTeX:  x_{3} =  (2.1674663999) - \frac{- \frac{111 (2.1674663999)^{3}}{250} + \cos{\left((2.1674663999) \right)} + 5}{- \frac{333 (2.1674663999)^{2}}{250} - \sin{\left((2.1674663999) \right)}} = 2.1557583990 LaTeX:  x_{4} =  (2.1557583990) - \frac{- \frac{111 (2.1557583990)^{3}}{250} + \cos{\left((2.1557583990) \right)} + 5}{- \frac{333 (2.1557583990)^{2}}{250} - \sin{\left((2.1557583990) \right)}} = 2.1557076085 LaTeX:  x_{5} =  (2.1557076085) - \frac{- \frac{111 (2.1557076085)^{3}}{250} + \cos{\left((2.1557076085) \right)} + 5}{- \frac{333 (2.1557076085)^{2}}{250} - \sin{\left((2.1557076085) \right)}} = 2.1557076076