Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{141 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{141 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{423 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{141 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{423 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 3.9035077731 LaTeX:  x_{2} =  (3.9035077731) - \frac{- \frac{141 (3.9035077731)^{3}}{1000} + \sin{\left((3.9035077731) \right)} + 8}{- \frac{423 (3.9035077731)^{2}}{1000} + \cos{\left((3.9035077731) \right)}} = 3.7532933143 LaTeX:  x_{3} =  (3.7532933143) - \frac{- \frac{141 (3.7532933143)^{3}}{1000} + \sin{\left((3.7532933143) \right)} + 8}{- \frac{423 (3.7532933143)^{2}}{1000} + \cos{\left((3.7532933143) \right)}} = 3.7489532980 LaTeX:  x_{4} =  (3.7489532980) - \frac{- \frac{141 (3.7489532980)^{3}}{1000} + \sin{\left((3.7489532980) \right)} + 8}{- \frac{423 (3.7489532980)^{2}}{1000} + \cos{\left((3.7489532980) \right)}} = 3.7489496777 LaTeX:  x_{5} =  (3.7489496777) - \frac{- \frac{141 (3.7489496777)^{3}}{1000} + \sin{\left((3.7489496777) \right)} + 8}{- \frac{423 (3.7489496777)^{2}}{1000} + \cos{\left((3.7489496777) \right)}} = 3.7489496777