Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{359 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{359 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 8}{- \frac{1077 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{359 (3.0000000000)^{3}}{1000} + \cos{\left((3.0000000000) \right)} + 8}{- \frac{1077 (3.0000000000)^{2}}{1000} - \sin{\left((3.0000000000) \right)}} = 2.7271751316 LaTeX:  x_{2} =  (2.7271751316) - \frac{- \frac{359 (2.7271751316)^{3}}{1000} + \cos{\left((2.7271751316) \right)} + 8}{- \frac{1077 (2.7271751316)^{2}}{1000} - \sin{\left((2.7271751316) \right)}} = 2.7037509501 LaTeX:  x_{3} =  (2.7037509501) - \frac{- \frac{359 (2.7037509501)^{3}}{1000} + \cos{\left((2.7037509501) \right)} + 8}{- \frac{1077 (2.7037509501)^{2}}{1000} - \sin{\left((2.7037509501) \right)}} = 2.7035874315 LaTeX:  x_{4} =  (2.7035874315) - \frac{- \frac{359 (2.7035874315)^{3}}{1000} + \cos{\left((2.7035874315) \right)} + 8}{- \frac{1077 (2.7035874315)^{2}}{1000} - \sin{\left((2.7035874315) \right)}} = 2.7035874235 LaTeX:  x_{5} =  (2.7035874235) - \frac{- \frac{359 (2.7035874235)^{3}}{1000} + \cos{\left((2.7035874235) \right)} + 8}{- \frac{1077 (2.7035874235)^{2}}{1000} - \sin{\left((2.7035874235) \right)}} = 2.7035874235