Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{17 x^{3}}{125} - 1 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{17 x_{n}^{3}}{125} + 1 + e^{- x_{n}}}{- \frac{51 x_{n}^{2}}{125} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{17 (3.0000000000)^{3}}{125} + 1 + e^{- (3.0000000000)}}{- \frac{51 (3.0000000000)^{2}}{125} - e^{- (3.0000000000)}} = 2.2954425163 LaTeX:  x_{2} =  (2.2954425163) - \frac{- \frac{17 (2.2954425163)^{3}}{125} + 1 + e^{- (2.2954425163)}}{- \frac{51 (2.2954425163)^{2}}{125} - e^{- (2.2954425163)}} = 2.0536384117 LaTeX:  x_{3} =  (2.0536384117) - \frac{- \frac{17 (2.0536384117)^{3}}{125} + 1 + e^{- (2.0536384117)}}{- \frac{51 (2.0536384117)^{2}}{125} - e^{- (2.0536384117)}} = 2.0267915922 LaTeX:  x_{4} =  (2.0267915922) - \frac{- \frac{17 (2.0267915922)^{3}}{125} + 1 + e^{- (2.0267915922)}}{- \frac{51 (2.0267915922)^{2}}{125} - e^{- (2.0267915922)}} = 2.0264847872 LaTeX:  x_{5} =  (2.0264847872) - \frac{- \frac{17 (2.0264847872)^{3}}{125} + 1 + e^{- (2.0264847872)}}{- \frac{51 (2.0264847872)^{2}}{125} - e^{- (2.0264847872)}} = 2.0264847475