Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{23 x^{3}}{200} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{23 x_{n}^{3}}{200} + \cos{\left(x_{n} \right)} + 5}{- \frac{69 x_{n}^{2}}{200} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{23 (3.0000000000)^{3}}{200} + \cos{\left((3.0000000000) \right)} + 5}{- \frac{69 (3.0000000000)^{2}}{200} - \sin{\left((3.0000000000) \right)}} = 3.2787966869 LaTeX:  x_{2} =  (3.2787966869) - \frac{- \frac{23 (3.2787966869)^{3}}{200} + \cos{\left((3.2787966869) \right)} + 5}{- \frac{69 (3.2787966869)^{2}}{200} - \sin{\left((3.2787966869) \right)}} = 3.2664214753 LaTeX:  x_{3} =  (3.2664214753) - \frac{- \frac{23 (3.2664214753)^{3}}{200} + \cos{\left((3.2664214753) \right)} + 5}{- \frac{69 (3.2664214753)^{2}}{200} - \sin{\left((3.2664214753) \right)}} = 3.2663941666 LaTeX:  x_{4} =  (3.2663941666) - \frac{- \frac{23 (3.2663941666)^{3}}{200} + \cos{\left((3.2663941666) \right)} + 5}{- \frac{69 (3.2663941666)^{2}}{200} - \sin{\left((3.2663941666) \right)}} = 3.2663941665 LaTeX:  x_{5} =  (3.2663941665) - \frac{- \frac{23 (3.2663941665)^{3}}{200} + \cos{\left((3.2663941665) \right)} + 5}{- \frac{69 (3.2663941665)^{2}}{200} - \sin{\left((3.2663941665) \right)}} = 3.2663941665