Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{39 x^{3}}{200} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{39 x_{n}^{3}}{200} + \cos{\left(x_{n} \right)} + 9}{- \frac{117 x_{n}^{2}}{200} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{39 (3.0000000000)^{3}}{200} + \cos{\left((3.0000000000) \right)} + 9}{- \frac{117 (3.0000000000)^{2}}{200} - \sin{\left((3.0000000000) \right)}} = 3.5077592616 LaTeX:  x_{2} =  (3.5077592616) - \frac{- \frac{39 (3.5077592616)^{3}}{200} + \cos{\left((3.5077592616) \right)} + 9}{- \frac{117 (3.5077592616)^{2}}{200} - \sin{\left((3.5077592616) \right)}} = 3.4565810710 LaTeX:  x_{3} =  (3.4565810710) - \frac{- \frac{39 (3.4565810710)^{3}}{200} + \cos{\left((3.4565810710) \right)} + 9}{- \frac{117 (3.4565810710)^{2}}{200} - \sin{\left((3.4565810710) \right)}} = 3.4559645716 LaTeX:  x_{4} =  (3.4559645716) - \frac{- \frac{39 (3.4559645716)^{3}}{200} + \cos{\left((3.4559645716) \right)} + 9}{- \frac{117 (3.4559645716)^{2}}{200} - \sin{\left((3.4559645716) \right)}} = 3.4559644836 LaTeX:  x_{5} =  (3.4559644836) - \frac{- \frac{39 (3.4559644836)^{3}}{200} + \cos{\left((3.4559644836) \right)} + 9}{- \frac{117 (3.4559644836)^{2}}{200} - \sin{\left((3.4559644836) \right)}} = 3.4559644836