Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{689 x^{3}}{1000} - 1 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{689 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 1}{- \frac{2067 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{689 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 1}{- \frac{2067 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.2926975412 LaTeX:  x_{2} =  (1.2926975412) - \frac{- \frac{689 (1.2926975412)^{3}}{1000} + \cos{\left((1.2926975412) \right)} + 1}{- \frac{2067 (1.2926975412)^{2}}{1000} - \sin{\left((1.2926975412) \right)}} = 1.2442703123 LaTeX:  x_{3} =  (1.2442703123) - \frac{- \frac{689 (1.2442703123)^{3}}{1000} + \cos{\left((1.2442703123) \right)} + 1}{- \frac{2067 (1.2442703123)^{2}}{1000} - \sin{\left((1.2442703123) \right)}} = 1.2426962376 LaTeX:  x_{4} =  (1.2426962376) - \frac{- \frac{689 (1.2426962376)^{3}}{1000} + \cos{\left((1.2426962376) \right)} + 1}{- \frac{2067 (1.2426962376)^{2}}{1000} - \sin{\left((1.2426962376) \right)}} = 1.2426946023 LaTeX:  x_{5} =  (1.2426946023) - \frac{- \frac{689 (1.2426946023)^{3}}{1000} + \cos{\left((1.2426946023) \right)} + 1}{- \frac{2067 (1.2426946023)^{2}}{1000} - \sin{\left((1.2426946023) \right)}} = 1.2426946023