Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{741 x^{3}}{1000} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{741 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 2}{- \frac{2223 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{741 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{2223 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 1.5871494019 LaTeX:  x_{2} =  (1.5871494019) - \frac{- \frac{741 (1.5871494019)^{3}}{1000} + \cos{\left((1.5871494019) \right)} + 2}{- \frac{2223 (1.5871494019)^{2}}{1000} - \sin{\left((1.5871494019) \right)}} = 1.4388179601 LaTeX:  x_{3} =  (1.4388179601) - \frac{- \frac{741 (1.4388179601)^{3}}{1000} + \cos{\left((1.4388179601) \right)} + 2}{- \frac{2223 (1.4388179601)^{2}}{1000} - \sin{\left((1.4388179601) \right)}} = 1.4253065071 LaTeX:  x_{4} =  (1.4253065071) - \frac{- \frac{741 (1.4253065071)^{3}}{1000} + \cos{\left((1.4253065071) \right)} + 2}{- \frac{2223 (1.4253065071)^{2}}{1000} - \sin{\left((1.4253065071) \right)}} = 1.4251985222 LaTeX:  x_{5} =  (1.4251985222) - \frac{- \frac{741 (1.4251985222)^{3}}{1000} + \cos{\left((1.4251985222) \right)} + 2}{- \frac{2223 (1.4251985222)^{2}}{1000} - \sin{\left((1.4251985222) \right)}} = 1.4251985153