Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{489 x^{3}}{500} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{489 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 9}{- \frac{1467 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{489 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 9}{- \frac{1467 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.3698027186 LaTeX:  x_{2} =  (2.3698027186) - \frac{- \frac{489 (2.3698027186)^{3}}{500} + \sin{\left((2.3698027186) \right)} + 9}{- \frac{1467 (2.3698027186)^{2}}{500} + \cos{\left((2.3698027186) \right)}} = 2.1767972404 LaTeX:  x_{3} =  (2.1767972404) - \frac{- \frac{489 (2.1767972404)^{3}}{500} + \sin{\left((2.1767972404) \right)} + 9}{- \frac{1467 (2.1767972404)^{2}}{500} + \cos{\left((2.1767972404) \right)}} = 2.1584322019 LaTeX:  x_{4} =  (2.1584322019) - \frac{- \frac{489 (2.1584322019)^{3}}{500} + \sin{\left((2.1584322019) \right)} + 9}{- \frac{1467 (2.1584322019)^{2}}{500} + \cos{\left((2.1584322019) \right)}} = 2.1582713955 LaTeX:  x_{5} =  (2.1582713955) - \frac{- \frac{489 (2.1582713955)^{3}}{500} + \sin{\left((2.1582713955) \right)} + 9}{- \frac{1467 (2.1582713955)^{2}}{500} + \cos{\left((2.1582713955) \right)}} = 2.1582713832