Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{24 x^{3}}{25} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{24 x_{n}^{3}}{25} + 9 + e^{- x_{n}}}{- \frac{72 x_{n}^{2}}{25} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{24 (3.0000000000)^{3}}{25} + 9 + e^{- (3.0000000000)}}{- \frac{72 (3.0000000000)^{2}}{25} - e^{- (3.0000000000)}} = 2.3503907873 LaTeX:  x_{2} =  (2.3503907873) - \frac{- \frac{24 (2.3503907873)^{3}}{25} + 9 + e^{- (2.3503907873)}}{- \frac{72 (2.3503907873)^{2}}{25} - e^{- (2.3503907873)}} = 2.1398593487 LaTeX:  x_{3} =  (2.1398593487) - \frac{- \frac{24 (2.1398593487)^{3}}{25} + 9 + e^{- (2.1398593487)}}{- \frac{72 (2.1398593487)^{2}}{25} - e^{- (2.1398593487)}} = 2.1181532342 LaTeX:  x_{4} =  (2.1181532342) - \frac{- \frac{24 (2.1181532342)^{3}}{25} + 9 + e^{- (2.1181532342)}}{- \frac{72 (2.1181532342)^{2}}{25} - e^{- (2.1181532342)}} = 2.1179334838 LaTeX:  x_{5} =  (2.1179334838) - \frac{- \frac{24 (2.1179334838)^{3}}{25} + 9 + e^{- (2.1179334838)}}{- \frac{72 (2.1179334838)^{2}}{25} - e^{- (2.1179334838)}} = 2.1179334614