Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{48 x^{3}}{125} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{48 x_{n}^{3}}{125} + \sin{\left(x_{n} \right)} + 6}{- \frac{144 x_{n}^{2}}{125} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{48 (3.0000000000)^{3}}{125} + \sin{\left((3.0000000000) \right)} + 6}{- \frac{144 (3.0000000000)^{2}}{125} + \cos{\left((3.0000000000) \right)}} = 2.6278497284 LaTeX:  x_{2} =  (2.6278497284) - \frac{- \frac{48 (2.6278497284)^{3}}{125} + \sin{\left((2.6278497284) \right)} + 6}{- \frac{144 (2.6278497284)^{2}}{125} + \cos{\left((2.6278497284) \right)}} = 2.5738108818 LaTeX:  x_{3} =  (2.5738108818) - \frac{- \frac{48 (2.5738108818)^{3}}{125} + \sin{\left((2.5738108818) \right)} + 6}{- \frac{144 (2.5738108818)^{2}}{125} + \cos{\left((2.5738108818) \right)}} = 2.5726875213 LaTeX:  x_{4} =  (2.5726875213) - \frac{- \frac{48 (2.5726875213)^{3}}{125} + \sin{\left((2.5726875213) \right)} + 6}{- \frac{144 (2.5726875213)^{2}}{125} + \cos{\left((2.5726875213) \right)}} = 2.5726870394 LaTeX:  x_{5} =  (2.5726870394) - \frac{- \frac{48 (2.5726870394)^{3}}{125} + \sin{\left((2.5726870394) \right)} + 6}{- \frac{144 (2.5726870394)^{2}}{125} + \cos{\left((2.5726870394) \right)}} = 2.5726870394