Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{269 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{269 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 6}{- \frac{807 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{269 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 6}{- \frac{807 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.8640638541 LaTeX:  x_{2} =  (2.8640638541) - \frac{- \frac{269 (2.8640638541)^{3}}{1000} + \sin{\left((2.8640638541) \right)} + 6}{- \frac{807 (2.8640638541)^{2}}{1000} + \cos{\left((2.8640638541) \right)}} = 2.8580258232 LaTeX:  x_{3} =  (2.8580258232) - \frac{- \frac{269 (2.8580258232)^{3}}{1000} + \sin{\left((2.8580258232) \right)} + 6}{- \frac{807 (2.8580258232)^{2}}{1000} + \cos{\left((2.8580258232) \right)}} = 2.8580140070 LaTeX:  x_{4} =  (2.8580140070) - \frac{- \frac{269 (2.8580140070)^{3}}{1000} + \sin{\left((2.8580140070) \right)} + 6}{- \frac{807 (2.8580140070)^{2}}{1000} + \cos{\left((2.8580140070) \right)}} = 2.8580140069 LaTeX:  x_{5} =  (2.8580140069) - \frac{- \frac{269 (2.8580140069)^{3}}{1000} + \sin{\left((2.8580140069) \right)} + 6}{- \frac{807 (2.8580140069)^{2}}{1000} + \cos{\left((2.8580140069) \right)}} = 2.8580140069