Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{523 x^{3}}{1000} - 4 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{523 x_{n}^{3}}{1000} + 4 + e^{- x_{n}}}{- \frac{1569 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{523 (1.0000000000)^{3}}{1000} + 4 + e^{- (1.0000000000)}}{- \frac{1569 (1.0000000000)^{2}}{1000} - e^{- (1.0000000000)}} = 2.9850897064 LaTeX:  x_{2} =  (2.9850897064) - \frac{- \frac{523 (2.9850897064)^{3}}{1000} + 4 + e^{- (2.9850897064)}}{- \frac{1569 (2.9850897064)^{2}}{1000} - e^{- (2.9850897064)}} = 2.2823174698 LaTeX:  x_{3} =  (2.2823174698) - \frac{- \frac{523 (2.2823174698)^{3}}{1000} + 4 + e^{- (2.2823174698)}}{- \frac{1569 (2.2823174698)^{2}}{1000} - e^{- (2.2823174698)}} = 2.0266470510 LaTeX:  x_{4} =  (2.0266470510) - \frac{- \frac{523 (2.0266470510)^{3}}{1000} + 4 + e^{- (2.0266470510)}}{- \frac{1569 (2.0266470510)^{2}}{1000} - e^{- (2.0266470510)}} = 1.9929344523 LaTeX:  x_{5} =  (1.9929344523) - \frac{- \frac{523 (1.9929344523)^{3}}{1000} + 4 + e^{- (1.9929344523)}}{- \frac{1569 (1.9929344523)^{2}}{1000} - e^{- (1.9929344523)}} = 1.9923819728