Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{229 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{229 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 6}{- \frac{687 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{229 (3.0000000000)^{3}}{1000} + \cos{\left((3.0000000000) \right)} + 6}{- \frac{687 (3.0000000000)^{2}}{1000} - \sin{\left((3.0000000000) \right)}} = 2.8145208353 LaTeX:  x_{2} =  (2.8145208353) - \frac{- \frac{229 (2.8145208353)^{3}}{1000} + \cos{\left((2.8145208353) \right)} + 6}{- \frac{687 (2.8145208353)^{2}}{1000} - \sin{\left((2.8145208353) \right)}} = 2.8053921643 LaTeX:  x_{3} =  (2.8053921643) - \frac{- \frac{229 (2.8053921643)^{3}}{1000} + \cos{\left((2.8053921643) \right)} + 6}{- \frac{687 (2.8053921643)^{2}}{1000} - \sin{\left((2.8053921643) \right)}} = 2.8053709782 LaTeX:  x_{4} =  (2.8053709782) - \frac{- \frac{229 (2.8053709782)^{3}}{1000} + \cos{\left((2.8053709782) \right)} + 6}{- \frac{687 (2.8053709782)^{2}}{1000} - \sin{\left((2.8053709782) \right)}} = 2.8053709781 LaTeX:  x_{5} =  (2.8053709781) - \frac{- \frac{229 (2.8053709781)^{3}}{1000} + \cos{\left((2.8053709781) \right)} + 6}{- \frac{687 (2.8053709781)^{2}}{1000} - \sin{\left((2.8053709781) \right)}} = 2.8053709781