Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{211 x^{3}}{250} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{211 x_{n}^{3}}{250} + \sin{\left(x_{n} \right)} + 2}{- \frac{633 x_{n}^{2}}{250} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{211 (1.0000000000)^{3}}{250} + \sin{\left((1.0000000000) \right)} + 2}{- \frac{633 (1.0000000000)^{2}}{250} + \cos{\left((1.0000000000) \right)}} = 2.0028986782 LaTeX:  x_{2} =  (2.0028986782) - \frac{- \frac{211 (2.0028986782)^{3}}{250} + \sin{\left((2.0028986782) \right)} + 2}{- \frac{633 (2.0028986782)^{2}}{250} + \cos{\left((2.0028986782) \right)}} = 1.6366681111 LaTeX:  x_{3} =  (1.6366681111) - \frac{- \frac{211 (1.6366681111)^{3}}{250} + \sin{\left((1.6366681111) \right)} + 2}{- \frac{633 (1.6366681111)^{2}}{250} + \cos{\left((1.6366681111) \right)}} = 1.5341074049 LaTeX:  x_{4} =  (1.5341074049) - \frac{- \frac{211 (1.5341074049)^{3}}{250} + \sin{\left((1.5341074049) \right)} + 2}{- \frac{633 (1.5341074049)^{2}}{250} + \cos{\left((1.5341074049) \right)}} = 1.5260135485 LaTeX:  x_{5} =  (1.5260135485) - \frac{- \frac{211 (1.5260135485)^{3}}{250} + \sin{\left((1.5260135485) \right)} + 2}{- \frac{633 (1.5260135485)^{2}}{250} + \cos{\left((1.5260135485) \right)}} = 1.5259645446