Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{843 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{843 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 8}{- \frac{2529 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{843 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{2529 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.3844518289 LaTeX:  x_{2} =  (2.3844518289) - \frac{- \frac{843 (2.3844518289)^{3}}{1000} + \sin{\left((2.3844518289) \right)} + 8}{- \frac{2529 (2.3844518289)^{2}}{1000} + \cos{\left((2.3844518289) \right)}} = 2.2029470355 LaTeX:  x_{3} =  (2.2029470355) - \frac{- \frac{843 (2.2029470355)^{3}}{1000} + \sin{\left((2.2029470355) \right)} + 8}{- \frac{2529 (2.2029470355)^{2}}{1000} + \cos{\left((2.2029470355) \right)}} = 2.1869624544 LaTeX:  x_{4} =  (2.1869624544) - \frac{- \frac{843 (2.1869624544)^{3}}{1000} + \sin{\left((2.1869624544) \right)} + 8}{- \frac{2529 (2.1869624544)^{2}}{1000} + \cos{\left((2.1869624544) \right)}} = 2.1868422428 LaTeX:  x_{5} =  (2.1868422428) - \frac{- \frac{843 (2.1868422428)^{3}}{1000} + \sin{\left((2.1868422428) \right)} + 8}{- \frac{2529 (2.1868422428)^{2}}{1000} + \cos{\left((2.1868422428) \right)}} = 2.1868422360