Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{89 x^{3}}{250} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{89 x_{n}^{3}}{250} + \sin{\left(x_{n} \right)} + 5}{- \frac{267 x_{n}^{2}}{250} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{89 (3.0000000000)^{3}}{250} + \sin{\left((3.0000000000) \right)} + 5}{- \frac{267 (3.0000000000)^{2}}{250} + \cos{\left((3.0000000000) \right)}} = 2.5782981366 LaTeX:  x_{2} =  (2.5782981366) - \frac{- \frac{89 (2.5782981366)^{3}}{250} + \sin{\left((2.5782981366) \right)} + 5}{- \frac{267 (2.5782981366)^{2}}{250} + \cos{\left((2.5782981366) \right)}} = 2.5068451974 LaTeX:  x_{3} =  (2.5068451974) - \frac{- \frac{89 (2.5068451974)^{3}}{250} + \sin{\left((2.5068451974) \right)} + 5}{- \frac{267 (2.5068451974)^{2}}{250} + \cos{\left((2.5068451974) \right)}} = 2.5048040783 LaTeX:  x_{4} =  (2.5048040783) - \frac{- \frac{89 (2.5048040783)^{3}}{250} + \sin{\left((2.5048040783) \right)} + 5}{- \frac{267 (2.5048040783)^{2}}{250} + \cos{\left((2.5048040783) \right)}} = 2.5048024277 LaTeX:  x_{5} =  (2.5048024277) - \frac{- \frac{89 (2.5048024277)^{3}}{250} + \sin{\left((2.5048024277) \right)} + 5}{- \frac{267 (2.5048024277)^{2}}{250} + \cos{\left((2.5048024277) \right)}} = 2.5048024277