Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{451 x^{3}}{1000} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{451 x_{n}^{3}}{1000} + 5 + e^{- x_{n}}}{- \frac{1353 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{451 (3.0000000000)^{3}}{1000} + 5 + e^{- (3.0000000000)}}{- \frac{1353 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.4170821090 LaTeX:  x_{2} =  (2.4170821090) - \frac{- \frac{451 (2.4170821090)^{3}}{1000} + 5 + e^{- (2.4170821090)}}{- \frac{1353 (2.4170821090)^{2}}{1000} - e^{- (2.4170821090)}} = 2.2570181989 LaTeX:  x_{3} =  (2.2570181989) - \frac{- \frac{451 (2.2570181989)^{3}}{1000} + 5 + e^{- (2.2570181989)}}{- \frac{1353 (2.2570181989)^{2}}{1000} - e^{- (2.2570181989)}} = 2.2454802230 LaTeX:  x_{4} =  (2.2454802230) - \frac{- \frac{451 (2.2454802230)^{3}}{1000} + 5 + e^{- (2.2454802230)}}{- \frac{1353 (2.2454802230)^{2}}{1000} - e^{- (2.2454802230)}} = 2.2454226528 LaTeX:  x_{5} =  (2.2454226528) - \frac{- \frac{451 (2.2454226528)^{3}}{1000} + 5 + e^{- (2.2454226528)}}{- \frac{1353 (2.2454226528)^{2}}{1000} - e^{- (2.2454226528)}} = 2.2454226513