Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{199 x^{3}}{500} - 3 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{199 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 3}{- \frac{597 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{199 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 3}{- \frac{597 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.3520036764 LaTeX:  x_{2} =  (2.3520036764) - \frac{- \frac{199 (2.3520036764)^{3}}{500} + \sin{\left((2.3520036764) \right)} + 3}{- \frac{597 (2.3520036764)^{2}}{500} + \cos{\left((2.3520036764) \right)}} = 2.1511139377 LaTeX:  x_{3} =  (2.1511139377) - \frac{- \frac{199 (2.1511139377)^{3}}{500} + \sin{\left((2.1511139377) \right)} + 3}{- \frac{597 (2.1511139377)^{2}}{500} + \cos{\left((2.1511139377) \right)}} = 2.1304766376 LaTeX:  x_{4} =  (2.1304766376) - \frac{- \frac{199 (2.1304766376)^{3}}{500} + \sin{\left((2.1304766376) \right)} + 3}{- \frac{597 (2.1304766376)^{2}}{500} + \cos{\left((2.1304766376) \right)}} = 2.1302633283 LaTeX:  x_{5} =  (2.1302633283) - \frac{- \frac{199 (2.1302633283)^{3}}{500} + \sin{\left((2.1302633283) \right)} + 3}{- \frac{597 (2.1302633283)^{2}}{500} + \cos{\left((2.1302633283) \right)}} = 2.1302633056