Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{187 x^{3}}{250} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{187 x_{n}^{3}}{250} + \sin{\left(x_{n} \right)} + 2}{- \frac{561 x_{n}^{2}}{250} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{187 (1.0000000000)^{3}}{250} + \sin{\left((1.0000000000) \right)} + 2}{- \frac{561 (1.0000000000)^{2}}{250} + \cos{\left((1.0000000000) \right)}} = 2.2287807820 LaTeX:  x_{2} =  (2.2287807820) - \frac{- \frac{187 (2.2287807820)^{3}}{250} + \sin{\left((2.2287807820) \right)} + 2}{- \frac{561 (2.2287807820)^{2}}{250} + \cos{\left((2.2287807820) \right)}} = 1.7618703722 LaTeX:  x_{3} =  (1.7618703722) - \frac{- \frac{187 (1.7618703722)^{3}}{250} + \sin{\left((1.7618703722) \right)} + 2}{- \frac{561 (1.7618703722)^{2}}{250} + \cos{\left((1.7618703722) \right)}} = 1.6068693325 LaTeX:  x_{4} =  (1.6068693325) - \frac{- \frac{187 (1.6068693325)^{3}}{250} + \sin{\left((1.6068693325) \right)} + 2}{- \frac{561 (1.6068693325)^{2}}{250} + \cos{\left((1.6068693325) \right)}} = 1.5890155422 LaTeX:  x_{5} =  (1.5890155422) - \frac{- \frac{187 (1.5890155422)^{3}}{250} + \sin{\left((1.5890155422) \right)} + 2}{- \frac{561 (1.5890155422)^{2}}{250} + \cos{\left((1.5890155422) \right)}} = 1.5887860608