Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{26 x^{3}}{125} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{26 x_{n}^{3}}{125} + \cos{\left(x_{n} \right)} + 2}{- \frac{78 x_{n}^{2}}{125} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{26 (1.0000000000)^{3}}{125} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{78 (1.0000000000)^{2}}{125} - \sin{\left((1.0000000000) \right)}} = 2.5915035712 LaTeX:  x_{2} =  (2.5915035712) - \frac{- \frac{26 (2.5915035712)^{3}}{125} + \cos{\left((2.5915035712) \right)} + 2}{- \frac{78 (2.5915035712)^{2}}{125} - \sin{\left((2.5915035712) \right)}} = 2.0669307514 LaTeX:  x_{3} =  (2.0669307514) - \frac{- \frac{26 (2.0669307514)^{3}}{125} + \cos{\left((2.0669307514) \right)} + 2}{- \frac{78 (2.0669307514)^{2}}{125} - \sin{\left((2.0669307514) \right)}} = 1.9787172705 LaTeX:  x_{4} =  (1.9787172705) - \frac{- \frac{26 (1.9787172705)^{3}}{125} + \cos{\left((1.9787172705) \right)} + 2}{- \frac{78 (1.9787172705)^{2}}{125} - \sin{\left((1.9787172705) \right)}} = 1.9762944652 LaTeX:  x_{5} =  (1.9762944652) - \frac{- \frac{26 (1.9762944652)^{3}}{125} + \cos{\left((1.9762944652) \right)} + 2}{- \frac{78 (1.9762944652)^{2}}{125} - \sin{\left((1.9762944652) \right)}} = 1.9762926528