Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{129 x^{3}}{200} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{129 x_{n}^{3}}{200} + \sin{\left(x_{n} \right)} + 9}{- \frac{387 x_{n}^{2}}{200} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{129 (3.0000000000)^{3}}{200} + \sin{\left((3.0000000000) \right)} + 9}{- \frac{387 (3.0000000000)^{2}}{200} + \cos{\left((3.0000000000) \right)}} = 2.5504545849 LaTeX:  x_{2} =  (2.5504545849) - \frac{- \frac{129 (2.5504545849)^{3}}{200} + \sin{\left((2.5504545849) \right)} + 9}{- \frac{387 (2.5504545849)^{2}}{200} + \cos{\left((2.5504545849) \right)}} = 2.4652350763 LaTeX:  x_{3} =  (2.4652350763) - \frac{- \frac{129 (2.4652350763)^{3}}{200} + \sin{\left((2.4652350763) \right)} + 9}{- \frac{387 (2.4652350763)^{2}}{200} + \cos{\left((2.4652350763) \right)}} = 2.4622405943 LaTeX:  x_{4} =  (2.4622405943) - \frac{- \frac{129 (2.4622405943)^{3}}{200} + \sin{\left((2.4622405943) \right)} + 9}{- \frac{387 (2.4622405943)^{2}}{200} + \cos{\left((2.4622405943) \right)}} = 2.4622369516 LaTeX:  x_{5} =  (2.4622369516) - \frac{- \frac{129 (2.4622369516)^{3}}{200} + \sin{\left((2.4622369516) \right)} + 9}{- \frac{387 (2.4622369516)^{2}}{200} + \cos{\left((2.4622369516) \right)}} = 2.4622369516