Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{3 x^{3}}{50} - 3 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{3 x_{n}^{3}}{50} + \cos{\left(x_{n} \right)} + 3}{- \frac{9 x_{n}^{2}}{50} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{3 (3.0000000000)^{3}}{50} + \cos{\left((3.0000000000) \right)} + 3}{- \frac{9 (3.0000000000)^{2}}{50} - \sin{\left((3.0000000000) \right)}} = 3.2214542459 LaTeX:  x_{2} =  (3.2214542459) - \frac{- \frac{3 (3.2214542459)^{3}}{50} + \cos{\left((3.2214542459) \right)} + 3}{- \frac{9 (3.2214542459)^{2}}{50} - \sin{\left((3.2214542459) \right)}} = 3.2199427216 LaTeX:  x_{3} =  (3.2199427216) - \frac{- \frac{3 (3.2199427216)^{3}}{50} + \cos{\left((3.2199427216) \right)} + 3}{- \frac{9 (3.2199427216)^{2}}{50} - \sin{\left((3.2199427216) \right)}} = 3.2199426177 LaTeX:  x_{4} =  (3.2199426177) - \frac{- \frac{3 (3.2199426177)^{3}}{50} + \cos{\left((3.2199426177) \right)} + 3}{- \frac{9 (3.2199426177)^{2}}{50} - \sin{\left((3.2199426177) \right)}} = 3.2199426177 LaTeX:  x_{5} =  (3.2199426177) - \frac{- \frac{3 (3.2199426177)^{3}}{50} + \cos{\left((3.2199426177) \right)} + 3}{- \frac{9 (3.2199426177)^{2}}{50} - \sin{\left((3.2199426177) \right)}} = 3.2199426177