Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{19 x^{3}}{125} - 1 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{19 x_{n}^{3}}{125} + \sin{\left(x_{n} \right)} + 1}{- \frac{57 x_{n}^{2}}{125} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{19 (3.0000000000)^{3}}{125} + \sin{\left((3.0000000000) \right)} + 1}{- \frac{57 (3.0000000000)^{2}}{125} + \cos{\left((3.0000000000) \right)}} = 2.4183579984 LaTeX:  x_{2} =  (2.4183579984) - \frac{- \frac{19 (2.4183579984)^{3}}{125} + \sin{\left((2.4183579984) \right)} + 1}{- \frac{57 (2.4183579984)^{2}}{125} + \cos{\left((2.4183579984) \right)}} = 2.2755177000 LaTeX:  x_{3} =  (2.2755177000) - \frac{- \frac{19 (2.2755177000)^{3}}{125} + \sin{\left((2.2755177000) \right)} + 1}{- \frac{57 (2.2755177000)^{2}}{125} + \cos{\left((2.2755177000) \right)}} = 2.2658263331 LaTeX:  x_{4} =  (2.2658263331) - \frac{- \frac{19 (2.2658263331)^{3}}{125} + \sin{\left((2.2658263331) \right)} + 1}{- \frac{57 (2.2658263331)^{2}}{125} + \cos{\left((2.2658263331) \right)}} = 2.2657816603 LaTeX:  x_{5} =  (2.2657816603) - \frac{- \frac{19 (2.2657816603)^{3}}{125} + \sin{\left((2.2657816603) \right)} + 1}{- \frac{57 (2.2657816603)^{2}}{125} + \cos{\left((2.2657816603) \right)}} = 2.2657816594