Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{761 x^{3}}{1000} - 7 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{761 x_{n}^{3}}{1000} + 7 + e^{- x_{n}}}{- \frac{2283 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{761 (3.0000000000)^{3}}{1000} + 7 + e^{- (3.0000000000)}}{- \frac{2283 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 2.3446932822 LaTeX:  x_{2} =  (2.3446932822) - \frac{- \frac{761 (2.3446932822)^{3}}{1000} + 7 + e^{- (2.3446932822)}}{- \frac{2283 (2.3446932822)^{2}}{1000} - e^{- (2.3446932822)}} = 2.1301317711 LaTeX:  x_{3} =  (2.1301317711) - \frac{- \frac{761 (2.1301317711)^{3}}{1000} + 7 + e^{- (2.1301317711)}}{- \frac{2283 (2.1301317711)^{2}}{1000} - e^{- (2.1301317711)}} = 2.1075564614 LaTeX:  x_{4} =  (2.1075564614) - \frac{- \frac{761 (2.1075564614)^{3}}{1000} + 7 + e^{- (2.1075564614)}}{- \frac{2283 (2.1075564614)^{2}}{1000} - e^{- (2.1075564614)}} = 2.1073187739 LaTeX:  x_{5} =  (2.1073187739) - \frac{- \frac{761 (2.1073187739)^{3}}{1000} + 7 + e^{- (2.1073187739)}}{- \frac{2283 (2.1073187739)^{2}}{1000} - e^{- (2.1073187739)}} = 2.1073187477