Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{23 x^{3}}{100} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{23 x_{n}^{3}}{100} + \cos{\left(x_{n} \right)} + 6}{- \frac{69 x_{n}^{2}}{100} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{23 (3.0000000000)^{3}}{100} + \cos{\left((3.0000000000) \right)} + 6}{- \frac{69 (3.0000000000)^{2}}{100} - \sin{\left((3.0000000000) \right)}} = 2.8110581291 LaTeX:  x_{2} =  (2.8110581291) - \frac{- \frac{23 (2.8110581291)^{3}}{100} + \cos{\left((2.8110581291) \right)} + 6}{- \frac{69 (2.8110581291)^{2}}{100} - \sin{\left((2.8110581291) \right)}} = 2.8015573537 LaTeX:  x_{3} =  (2.8015573537) - \frac{- \frac{23 (2.8015573537)^{3}}{100} + \cos{\left((2.8015573537) \right)} + 6}{- \frac{69 (2.8015573537)^{2}}{100} - \sin{\left((2.8015573537) \right)}} = 2.8015343520 LaTeX:  x_{4} =  (2.8015343520) - \frac{- \frac{23 (2.8015343520)^{3}}{100} + \cos{\left((2.8015343520) \right)} + 6}{- \frac{69 (2.8015343520)^{2}}{100} - \sin{\left((2.8015343520) \right)}} = 2.8015343518 LaTeX:  x_{5} =  (2.8015343518) - \frac{- \frac{23 (2.8015343518)^{3}}{100} + \cos{\left((2.8015343518) \right)} + 6}{- \frac{69 (2.8015343518)^{2}}{100} - \sin{\left((2.8015343518) \right)}} = 2.8015343518