Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{79 x^{3}}{100} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{79 x_{n}^{3}}{100} + \sin{\left(x_{n} \right)} + 8}{- \frac{237 x_{n}^{2}}{100} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{79 (3.0000000000)^{3}}{100} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{237 (3.0000000000)^{2}}{100} + \cos{\left((3.0000000000) \right)}} = 2.4091001601 LaTeX:  x_{2} =  (2.4091001601) - \frac{- \frac{79 (2.4091001601)^{3}}{100} + \sin{\left((2.4091001601) \right)} + 8}{- \frac{237 (2.4091001601)^{2}}{100} + \cos{\left((2.4091001601) \right)}} = 2.2451558640 LaTeX:  x_{3} =  (2.2451558640) - \frac{- \frac{79 (2.2451558640)^{3}}{100} + \sin{\left((2.2451558640) \right)} + 8}{- \frac{237 (2.2451558640)^{2}}{100} + \cos{\left((2.2451558640) \right)}} = 2.2324685436 LaTeX:  x_{4} =  (2.2324685436) - \frac{- \frac{79 (2.2324685436)^{3}}{100} + \sin{\left((2.2324685436) \right)} + 8}{- \frac{237 (2.2324685436)^{2}}{100} + \cos{\left((2.2324685436) \right)}} = 2.2323946698 LaTeX:  x_{5} =  (2.2323946698) - \frac{- \frac{79 (2.2323946698)^{3}}{100} + \sin{\left((2.2323946698) \right)} + 8}{- \frac{237 (2.2323946698)^{2}}{100} + \cos{\left((2.2323946698) \right)}} = 2.2323946673