Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{21 x^{3}}{100} - 2 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{21 x_{n}^{3}}{100} + \cos{\left(x_{n} \right)} + 2}{- \frac{63 x_{n}^{2}}{100} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{21 (1.0000000000)^{3}}{100} + \cos{\left((1.0000000000) \right)} + 2}{- \frac{63 (1.0000000000)^{2}}{100} - \sin{\left((1.0000000000) \right)}} = 2.5836549480 LaTeX:  x_{2} =  (2.5836549480) - \frac{- \frac{21 (2.5836549480)^{3}}{100} + \cos{\left((2.5836549480) \right)} + 2}{- \frac{63 (2.5836549480)^{2}}{100} - \sin{\left((2.5836549480) \right)}} = 2.0619636389 LaTeX:  x_{3} =  (2.0619636389) - \frac{- \frac{21 (2.0619636389)^{3}}{100} + \cos{\left((2.0619636389) \right)} + 2}{- \frac{63 (2.0619636389)^{2}}{100} - \sin{\left((2.0619636389) \right)}} = 1.9741375532 LaTeX:  x_{4} =  (1.9741375532) - \frac{- \frac{21 (1.9741375532)^{3}}{100} + \cos{\left((1.9741375532) \right)} + 2}{- \frac{63 (1.9741375532)^{2}}{100} - \sin{\left((1.9741375532) \right)}} = 1.9717199525 LaTeX:  x_{5} =  (1.9717199525) - \frac{- \frac{21 (1.9717199525)^{3}}{100} + \cos{\left((1.9717199525) \right)} + 2}{- \frac{63 (1.9717199525)^{2}}{100} - \sin{\left((1.9717199525) \right)}} = 1.9717181360