Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{621 x^{3}}{1000} - 3 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{621 x_{n}^{3}}{1000} + \cos{\left(x_{n} \right)} + 3}{- \frac{1863 x_{n}^{2}}{1000} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{621 (1.0000000000)^{3}}{1000} + \cos{\left((1.0000000000) \right)} + 3}{- \frac{1863 (1.0000000000)^{2}}{1000} - \sin{\left((1.0000000000) \right)}} = 2.0794356169 LaTeX:  x_{2} =  (2.0794356169) - \frac{- \frac{621 (2.0794356169)^{3}}{1000} + \cos{\left((2.0794356169) \right)} + 3}{- \frac{1863 (2.0794356169)^{2}}{1000} - \sin{\left((2.0794356169) \right)}} = 1.7355308839 LaTeX:  x_{3} =  (1.7355308839) - \frac{- \frac{621 (1.7355308839)^{3}}{1000} + \cos{\left((1.7355308839) \right)} + 3}{- \frac{1863 (1.7355308839)^{2}}{1000} - \sin{\left((1.7355308839) \right)}} = 1.6733462972 LaTeX:  x_{4} =  (1.6733462972) - \frac{- \frac{621 (1.6733462972)^{3}}{1000} + \cos{\left((1.6733462972) \right)} + 3}{- \frac{1863 (1.6733462972)^{2}}{1000} - \sin{\left((1.6733462972) \right)}} = 1.6714020808 LaTeX:  x_{5} =  (1.6714020808) - \frac{- \frac{621 (1.6714020808)^{3}}{1000} + \cos{\left((1.6714020808) \right)} + 3}{- \frac{1863 (1.6714020808)^{2}}{1000} - \sin{\left((1.6714020808) \right)}} = 1.6714002117