Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{269 x^{3}}{500} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{269 x_{n}^{3}}{500} + \cos{\left(x_{n} \right)} + 8}{- \frac{807 x_{n}^{2}}{500} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{269 (3.0000000000)^{3}}{500} + \cos{\left((3.0000000000) \right)} + 8}{- \frac{807 (3.0000000000)^{2}}{500} - \sin{\left((3.0000000000) \right)}} = 2.4875618054 LaTeX:  x_{2} =  (2.4875618054) - \frac{- \frac{269 (2.4875618054)^{3}}{500} + \cos{\left((2.4875618054) \right)} + 8}{- \frac{807 (2.4875618054)^{2}}{500} - \sin{\left((2.4875618054) \right)}} = 2.3861023103 LaTeX:  x_{3} =  (2.3861023103) - \frac{- \frac{269 (2.3861023103)^{3}}{500} + \cos{\left((2.3861023103) \right)} + 8}{- \frac{807 (2.3861023103)^{2}}{500} - \sin{\left((2.3861023103) \right)}} = 2.3823764774 LaTeX:  x_{4} =  (2.3823764774) - \frac{- \frac{269 (2.3823764774)^{3}}{500} + \cos{\left((2.3823764774) \right)} + 8}{- \frac{807 (2.3823764774)^{2}}{500} - \sin{\left((2.3823764774) \right)}} = 2.3823715645 LaTeX:  x_{5} =  (2.3823715645) - \frac{- \frac{269 (2.3823715645)^{3}}{500} + \cos{\left((2.3823715645) \right)} + 8}{- \frac{807 (2.3823715645)^{2}}{500} - \sin{\left((2.3823715645) \right)}} = 2.3823715645