Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{52 x^{3}}{125} - 9 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{52 x_{n}^{3}}{125} + 9 + e^{- x_{n}}}{- \frac{156 x_{n}^{2}}{125} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{52 (3.0000000000)^{3}}{125} + 9 + e^{- (3.0000000000)}}{- \frac{156 (3.0000000000)^{2}}{125} - e^{- (3.0000000000)}} = 2.8065720512 LaTeX:  x_{2} =  (2.8065720512) - \frac{- \frac{52 (2.8065720512)^{3}}{125} + 9 + e^{- (2.8065720512)}}{- \frac{156 (2.8065720512)^{2}}{125} - e^{- (2.8065720512)}} = 2.7928142638 LaTeX:  x_{3} =  (2.7928142638) - \frac{- \frac{52 (2.7928142638)^{3}}{125} + 9 + e^{- (2.7928142638)}}{- \frac{156 (2.7928142638)^{2}}{125} - e^{- (2.7928142638)}} = 2.7927472800 LaTeX:  x_{4} =  (2.7927472800) - \frac{- \frac{52 (2.7927472800)^{3}}{125} + 9 + e^{- (2.7927472800)}}{- \frac{156 (2.7927472800)^{2}}{125} - e^{- (2.7927472800)}} = 2.7927472784 LaTeX:  x_{5} =  (2.7927472784) - \frac{- \frac{52 (2.7927472784)^{3}}{125} + 9 + e^{- (2.7927472784)}}{- \frac{156 (2.7927472784)^{2}}{125} - e^{- (2.7927472784)}} = 2.7927472784