Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{93 x^{3}}{500} - 3 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{93 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 3}{- \frac{279 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{93 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 3}{- \frac{279 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.6871453195 LaTeX:  x_{2} =  (2.6871453195) - \frac{- \frac{93 (2.6871453195)^{3}}{500} + \sin{\left((2.6871453195) \right)} + 3}{- \frac{279 (2.6871453195)^{2}}{500} + \cos{\left((2.6871453195) \right)}} = 2.6526402081 LaTeX:  x_{3} =  (2.6526402081) - \frac{- \frac{93 (2.6526402081)^{3}}{500} + \sin{\left((2.6526402081) \right)} + 3}{- \frac{279 (2.6526402081)^{2}}{500} + \cos{\left((2.6526402081) \right)}} = 2.6522149759 LaTeX:  x_{4} =  (2.6522149759) - \frac{- \frac{93 (2.6522149759)^{3}}{500} + \sin{\left((2.6522149759) \right)} + 3}{- \frac{279 (2.6522149759)^{2}}{500} + \cos{\left((2.6522149759) \right)}} = 2.6522149114 LaTeX:  x_{5} =  (2.6522149114) - \frac{- \frac{93 (2.6522149114)^{3}}{500} + \sin{\left((2.6522149114) \right)} + 3}{- \frac{279 (2.6522149114)^{2}}{500} + \cos{\left((2.6522149114) \right)}} = 2.6522149114