Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{x^{3}}{4} - 4 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{x_{n}^{3}}{4} + \cos{\left(x_{n} \right)} + 4}{- \frac{3 x_{n}^{2}}{4} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{(3.0000000000)^{3}}{4} + \cos{\left((3.0000000000) \right)} + 4}{- \frac{3 (3.0000000000)^{2}}{4} - \sin{\left((3.0000000000) \right)}} = 2.4572736373 LaTeX:  x_{2} =  (2.4572736373) - \frac{- \frac{(2.4572736373)^{3}}{4} + \cos{\left((2.4572736373) \right)} + 4}{- \frac{3 (2.4572736373)^{2}}{4} - \sin{\left((2.4572736373) \right)}} = 2.3634462970 LaTeX:  x_{3} =  (2.3634462970) - \frac{- \frac{(2.3634462970)^{3}}{4} + \cos{\left((2.3634462970) \right)} + 4}{- \frac{3 (2.3634462970)^{2}}{4} - \sin{\left((2.3634462970) \right)}} = 2.3608505311 LaTeX:  x_{4} =  (2.3608505311) - \frac{- \frac{(2.3608505311)^{3}}{4} + \cos{\left((2.3608505311) \right)} + 4}{- \frac{3 (2.3608505311)^{2}}{4} - \sin{\left((2.3608505311) \right)}} = 2.3608485774 LaTeX:  x_{5} =  (2.3608485774) - \frac{- \frac{(2.3608485774)^{3}}{4} + \cos{\left((2.3608485774) \right)} + 4}{- \frac{3 (2.3608485774)^{2}}{4} - \sin{\left((2.3608485774) \right)}} = 2.3608485774