Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{347 x^{3}}{500} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{347 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 8}{- \frac{1041 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{347 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 8}{- \frac{1041 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.4628505666 LaTeX:  x_{2} =  (2.4628505666) - \frac{- \frac{347 (2.4628505666)^{3}}{500} + \sin{\left((2.4628505666) \right)} + 8}{- \frac{1041 (2.4628505666)^{2}}{500} + \cos{\left((2.4628505666) \right)}} = 2.3330918639 LaTeX:  x_{3} =  (2.3330918639) - \frac{- \frac{347 (2.3330918639)^{3}}{500} + \sin{\left((2.3330918639) \right)} + 8}{- \frac{1041 (2.3330918639)^{2}}{500} + \cos{\left((2.3330918639) \right)}} = 2.3255748907 LaTeX:  x_{4} =  (2.3255748907) - \frac{- \frac{347 (2.3255748907)^{3}}{500} + \sin{\left((2.3255748907) \right)} + 8}{- \frac{1041 (2.3255748907)^{2}}{500} + \cos{\left((2.3255748907) \right)}} = 2.3255502231 LaTeX:  x_{5} =  (2.3255502231) - \frac{- \frac{347 (2.3255502231)^{3}}{500} + \sin{\left((2.3255502231) \right)} + 8}{- \frac{1041 (2.3255502231)^{2}}{500} + \cos{\left((2.3255502231) \right)}} = 2.3255502228