Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{9 x^{3}}{200} - 9 using LaTeX:  \displaystyle x_0=7 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{9 x_{n}^{3}}{200} + \cos{\left(x_{n} \right)} + 9}{- \frac{27 x_{n}^{2}}{200} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 7 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (7.0000000000) - \frac{- \frac{9 (7.0000000000)^{3}}{200} + \cos{\left((7.0000000000) \right)} + 9}{- \frac{27 (7.0000000000)^{2}}{200} - \sin{\left((7.0000000000) \right)}} = 6.2187694974 LaTeX:  x_{2} =  (6.2187694974) - \frac{- \frac{9 (6.2187694974)^{3}}{200} + \cos{\left((6.2187694974) \right)} + 9}{- \frac{27 (6.2187694974)^{2}}{200} - \sin{\left((6.2187694974) \right)}} = 6.0588679848 LaTeX:  x_{3} =  (6.0588679848) - \frac{- \frac{9 (6.0588679848)^{3}}{200} + \cos{\left((6.0588679848) \right)} + 9}{- \frac{27 (6.0588679848)^{2}}{200} - \sin{\left((6.0588679848) \right)}} = 6.0516916523 LaTeX:  x_{4} =  (6.0516916523) - \frac{- \frac{9 (6.0516916523)^{3}}{200} + \cos{\left((6.0516916523) \right)} + 9}{- \frac{27 (6.0516916523)^{2}}{200} - \sin{\left((6.0516916523) \right)}} = 6.0516773993 LaTeX:  x_{5} =  (6.0516773993) - \frac{- \frac{9 (6.0516773993)^{3}}{200} + \cos{\left((6.0516773993) \right)} + 9}{- \frac{27 (6.0516773993)^{2}}{200} - \sin{\left((6.0516773993) \right)}} = 6.0516773992