Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{131 x^{3}}{500} - 5 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{131 x_{n}^{3}}{500} + \sin{\left(x_{n} \right)} + 5}{- \frac{393 x_{n}^{2}}{500} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{131 (3.0000000000)^{3}}{500} + \sin{\left((3.0000000000) \right)} + 5}{- \frac{393 (3.0000000000)^{2}}{500} + \cos{\left((3.0000000000) \right)}} = 2.7603073177 LaTeX:  x_{2} =  (2.7603073177) - \frac{- \frac{131 (2.7603073177)^{3}}{500} + \sin{\left((2.7603073177) \right)} + 5}{- \frac{393 (2.7603073177)^{2}}{500} + \cos{\left((2.7603073177) \right)}} = 2.7403324343 LaTeX:  x_{3} =  (2.7403324343) - \frac{- \frac{131 (2.7403324343)^{3}}{500} + \sin{\left((2.7403324343) \right)} + 5}{- \frac{393 (2.7403324343)^{2}}{500} + \cos{\left((2.7403324343) \right)}} = 2.7401948051 LaTeX:  x_{4} =  (2.7401948051) - \frac{- \frac{131 (2.7401948051)^{3}}{500} + \sin{\left((2.7401948051) \right)} + 5}{- \frac{393 (2.7401948051)^{2}}{500} + \cos{\left((2.7401948051) \right)}} = 2.7401947986 LaTeX:  x_{5} =  (2.7401947986) - \frac{- \frac{131 (2.7401947986)^{3}}{500} + \sin{\left((2.7401947986) \right)} + 5}{- \frac{393 (2.7401947986)^{2}}{500} + \cos{\left((2.7401947986) \right)}} = 2.7401947986