Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \cos{\left(x \right)}= \frac{153 x^{3}}{250} - 1 using LaTeX:  \displaystyle x_0=1 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{153 x_{n}^{3}}{250} + \cos{\left(x_{n} \right)} + 1}{- \frac{459 x_{n}^{2}}{250} - \sin{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 1 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (1.0000000000) - \frac{- \frac{153 (1.0000000000)^{3}}{250} + \cos{\left((1.0000000000) \right)} + 1}{- \frac{459 (1.0000000000)^{2}}{250} - \sin{\left((1.0000000000) \right)}} = 1.3467086333 LaTeX:  x_{2} =  (1.3467086333) - \frac{- \frac{153 (1.3467086333)^{3}}{250} + \cos{\left((1.3467086333) \right)} + 1}{- \frac{459 (1.3467086333)^{2}}{250} - \sin{\left((1.3467086333) \right)}} = 1.2833966586 LaTeX:  x_{3} =  (1.2833966586) - \frac{- \frac{153 (1.2833966586)^{3}}{250} + \cos{\left((1.2833966586) \right)} + 1}{- \frac{459 (1.2833966586)^{2}}{250} - \sin{\left((1.2833966586) \right)}} = 1.2808252394 LaTeX:  x_{4} =  (1.2808252394) - \frac{- \frac{153 (1.2808252394)^{3}}{250} + \cos{\left((1.2808252394) \right)} + 1}{- \frac{459 (1.2808252394)^{2}}{250} - \sin{\left((1.2808252394) \right)}} = 1.2808210810 LaTeX:  x_{5} =  (1.2808210810) - \frac{- \frac{153 (1.2808210810)^{3}}{250} + \cos{\left((1.2808210810) \right)} + 1}{- \frac{459 (1.2808210810)^{2}}{250} - \sin{\left((1.2808210810) \right)}} = 1.2808210810