Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{9 x^{3}}{125} - 6 using LaTeX:  \displaystyle x_0=5 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{9 x_{n}^{3}}{125} + 6 + e^{- x_{n}}}{- \frac{27 x_{n}^{2}}{125} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 5 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (5.0000000000) - \frac{- \frac{9 (5.0000000000)^{3}}{125} + 6 + e^{- (5.0000000000)}}{- \frac{27 (5.0000000000)^{2}}{125} - e^{- (5.0000000000)}} = 4.4463829980 LaTeX:  x_{2} =  (4.4463829980) - \frac{- \frac{9 (4.4463829980)^{3}}{125} + 6 + e^{- (4.4463829980)}}{- \frac{27 (4.4463829980)^{2}}{125} - e^{- (4.4463829980)}} = 4.3722276141 LaTeX:  x_{3} =  (4.3722276141) - \frac{- \frac{9 (4.3722276141)^{3}}{125} + 6 + e^{- (4.3722276141)}}{- \frac{27 (4.3722276141)^{2}}{125} - e^{- (4.3722276141)}} = 4.3709675304 LaTeX:  x_{4} =  (4.3709675304) - \frac{- \frac{9 (4.3709675304)^{3}}{125} + 6 + e^{- (4.3709675304)}}{- \frac{27 (4.3709675304)^{2}}{125} - e^{- (4.3709675304)}} = 4.3709671706 LaTeX:  x_{5} =  (4.3709671706) - \frac{- \frac{9 (4.3709671706)^{3}}{125} + 6 + e^{- (4.3709671706)}}{- \frac{27 (4.3709671706)^{2}}{125} - e^{- (4.3709671706)}} = 4.3709671706