Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle e^{- x}= \frac{221 x^{3}}{1000} - 8 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{221 x_{n}^{3}}{1000} + 8 + e^{- x_{n}}}{- \frac{663 x_{n}^{2}}{1000} - e^{- x_{n}}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{221 (3.0000000000)^{3}}{1000} + 8 + e^{- (3.0000000000)}}{- \frac{663 (3.0000000000)^{2}}{1000} - e^{- (3.0000000000)}} = 3.3461626687 LaTeX:  x_{2} =  (3.3461626687) - \frac{- \frac{221 (3.3461626687)^{3}}{1000} + 8 + e^{- (3.3461626687)}}{- \frac{663 (3.3461626687)^{2}}{1000} - e^{- (3.3461626687)}} = 3.3133366305 LaTeX:  x_{3} =  (3.3133366305) - \frac{- \frac{221 (3.3133366305)^{3}}{1000} + 8 + e^{- (3.3133366305)}}{- \frac{663 (3.3133366305)^{2}}{1000} - e^{- (3.3133366305)}} = 3.3130135183 LaTeX:  x_{4} =  (3.3130135183) - \frac{- \frac{221 (3.3130135183)^{3}}{1000} + 8 + e^{- (3.3130135183)}}{- \frac{663 (3.3130135183)^{2}}{1000} - e^{- (3.3130135183)}} = 3.3130134872 LaTeX:  x_{5} =  (3.3130134872) - \frac{- \frac{221 (3.3130134872)^{3}}{1000} + 8 + e^{- (3.3130134872)}}{- \frac{663 (3.3130134872)^{2}}{1000} - e^{- (3.3130134872)}} = 3.3130134872