Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{143 x^{3}}{250} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{143 x_{n}^{3}}{250} + \sin{\left(x_{n} \right)} + 6}{- \frac{429 x_{n}^{2}}{250} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{143 (3.0000000000)^{3}}{250} + \sin{\left((3.0000000000) \right)} + 6}{- \frac{429 (3.0000000000)^{2}}{250} + \cos{\left((3.0000000000) \right)}} = 2.4339245321 LaTeX:  x_{2} =  (2.4339245321) - \frac{- \frac{143 (2.4339245321)^{3}}{250} + \sin{\left((2.4339245321) \right)} + 6}{- \frac{429 (2.4339245321)^{2}}{250} + \cos{\left((2.4339245321) \right)}} = 2.2877206836 LaTeX:  x_{3} =  (2.2877206836) - \frac{- \frac{143 (2.2877206836)^{3}}{250} + \sin{\left((2.2877206836) \right)} + 6}{- \frac{429 (2.2877206836)^{2}}{250} + \cos{\left((2.2877206836) \right)}} = 2.2778825184 LaTeX:  x_{4} =  (2.2778825184) - \frac{- \frac{143 (2.2778825184)^{3}}{250} + \sin{\left((2.2778825184) \right)} + 6}{- \frac{429 (2.2778825184)^{2}}{250} + \cos{\left((2.2778825184) \right)}} = 2.2778389731 LaTeX:  x_{5} =  (2.2778389731) - \frac{- \frac{143 (2.2778389731)^{3}}{250} + \sin{\left((2.2778389731) \right)} + 6}{- \frac{429 (2.2778389731)^{2}}{250} + \cos{\left((2.2778389731) \right)}} = 2.2778389723