Use Newton's method to find the first 5 approximations of the solution to the equation LaTeX:  \displaystyle \sin{\left(x \right)}= \frac{537 x^{3}}{1000} - 6 using LaTeX:  \displaystyle x_0=3 .

Using the formula for Newton's method gives LaTeX:  x_{n+1} =  x_{n} - \frac{- \frac{537 x_{n}^{3}}{1000} + \sin{\left(x_{n} \right)} + 6}{- \frac{1611 x_{n}^{2}}{1000} + \cos{\left(x_{n} \right)}}   Using LaTeX:  \displaystyle x_0 = 3 and LaTeX:  \displaystyle n = 0,1,2,3, and LaTeX:  \displaystyle 4 gives: LaTeX:  x_{1} =  (3.0000000000) - \frac{- \frac{537 (3.0000000000)^{3}}{1000} + \sin{\left((3.0000000000) \right)} + 6}{- \frac{1611 (3.0000000000)^{2}}{1000} + \cos{\left((3.0000000000) \right)}} = 2.4603987320 LaTeX:  x_{2} =  (2.4603987320) - \frac{- \frac{537 (2.4603987320)^{3}}{1000} + \sin{\left((2.4603987320) \right)} + 6}{- \frac{1611 (2.4603987320)^{2}}{1000} + \cos{\left((2.4603987320) \right)}} = 2.3304303249 LaTeX:  x_{3} =  (2.3304303249) - \frac{- \frac{537 (2.3304303249)^{3}}{1000} + \sin{\left((2.3304303249) \right)} + 6}{- \frac{1611 (2.3304303249)^{2}}{1000} + \cos{\left((2.3304303249) \right)}} = 2.3228682003 LaTeX:  x_{4} =  (2.3228682003) - \frac{- \frac{537 (2.3228682003)^{3}}{1000} + \sin{\left((2.3228682003) \right)} + 6}{- \frac{1611 (2.3228682003)^{2}}{1000} + \cos{\left((2.3228682003) \right)}} = 2.3228431094 LaTeX:  x_{5} =  (2.3228431094) - \frac{- \frac{537 (2.3228431094)^{3}}{1000} + \sin{\left((2.3228431094) \right)} + 6}{- \frac{1611 (2.3228431094)^{2}}{1000} + \cos{\left((2.3228431094) \right)}} = 2.3228431091