\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus

Please login to create an exam or a quiz.

Calculus
Limits
New Random

Find the vertical asymptote(s) and hole(s) of the rational function \(\displaystyle f(x)=\frac{ x^{2} + 11 x + 28 }{ x^{2} - 2 x - 63 }\)


Factoring gives \(\displaystyle f(x)=\frac{ \left(x + 4\right) \left(x + 7\right) }{ \left(x - 9\right) \left(x + 7\right) }\). The factor \(\displaystyle x + 7\) reduces out. The reduced function is \(\displaystyle f(x) = \frac{x + 4}{x - 9}\). This gives a hole at \(\displaystyle \left(-7,\frac{3}{16}\right) \). The limit from the left is \(\displaystyle \lim_{x \to 9^-}\left(\frac{x + 4}{x - 9}\right) = -\infty\). The limit from the right is \(\displaystyle \lim_{x \to 9^+}\left(\frac{x + 4}{x - 9}\right) = \infty\). This gives the vertical asymptote as \(\displaystyle x = 9\).

Download \(\LaTeX\)

\begin{question}Find the vertical asymptote(s) and hole(s) of the rational function $f(x)=\frac{ x^{2} + 11 x + 28 }{ x^{2} - 2 x - 63 }$
    \soln{6cm}{Factoring gives $f(x)=\frac{ \left(x + 4\right) \left(x + 7\right) }{ \left(x - 9\right) \left(x + 7\right) }$. The factor $x + 7$ reduces out. The reduced function is $f(x) = \frac{x + 4}{x - 9}$. This gives a hole at $\left(-7,\frac{3}{16}\right) $. The limit from the left is $\lim_{x \to 9^-}\left(\frac{x + 4}{x - 9}\right) = -\infty$. The limit from the right is $\lim_{x \to 9^+}\left(\frac{x + 4}{x - 9}\right) = \infty$. This gives the vertical asymptote as $x = 9$.}

\end{question}

Download Question and Solution Environment\(\LaTeX\)
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}

\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}

\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}

\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue

\begin{document}\begin{question}(10pts) The question goes here!
    \soln{9cm}{The solution goes here.}

\end{question}\end{document}
HTML for Canvas
<p> <p>Find the vertical asymptote(s) and hole(s) of the rational function  <img class="equation_image" title=" \displaystyle f(x)=\frac{ x^{2} + 11 x + 28 }{ x^{2} - 2 x - 63 } " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%3D%5Cfrac%7B%20x%5E%7B2%7D%20%2B%2011%20x%20%2B%2028%20%7D%7B%20x%5E%7B2%7D%20-%202%20x%20-%2063%20%7D%20" alt="LaTeX:  \displaystyle f(x)=\frac{ x^{2} + 11 x + 28 }{ x^{2} - 2 x - 63 } " data-equation-content=" \displaystyle f(x)=\frac{ x^{2} + 11 x + 28 }{ x^{2} - 2 x - 63 } " /> </p> </p>
HTML for Canvas
<p> <p>Factoring gives  <img class="equation_image" title=" \displaystyle f(x)=\frac{ \left(x + 4\right) \left(x + 7\right) }{ \left(x - 9\right) \left(x + 7\right) } " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%3D%5Cfrac%7B%20%5Cleft%28x%20%2B%204%5Cright%29%20%5Cleft%28x%20%2B%207%5Cright%29%20%7D%7B%20%5Cleft%28x%20-%209%5Cright%29%20%5Cleft%28x%20%2B%207%5Cright%29%20%7D%20" alt="LaTeX:  \displaystyle f(x)=\frac{ \left(x + 4\right) \left(x + 7\right) }{ \left(x - 9\right) \left(x + 7\right) } " data-equation-content=" \displaystyle f(x)=\frac{ \left(x + 4\right) \left(x + 7\right) }{ \left(x - 9\right) \left(x + 7\right) } " /> . The factor  <img class="equation_image" title=" \displaystyle x + 7 " src="/equation_images/%20%5Cdisplaystyle%20x%20%2B%207%20" alt="LaTeX:  \displaystyle x + 7 " data-equation-content=" \displaystyle x + 7 " />  reduces out. The reduced function is  <img class="equation_image" title=" \displaystyle f(x) = \frac{x + 4}{x - 9} " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%20%3D%20%5Cfrac%7Bx%20%2B%204%7D%7Bx%20-%209%7D%20" alt="LaTeX:  \displaystyle f(x) = \frac{x + 4}{x - 9} " data-equation-content=" \displaystyle f(x) = \frac{x + 4}{x - 9} " /> . This gives a hole at  <img class="equation_image" title=" \displaystyle \left(-7,\frac{3}{16}\right)  " src="/equation_images/%20%5Cdisplaystyle%20%5Cleft%28-7%2C%5Cfrac%7B3%7D%7B16%7D%5Cright%29%20%20" alt="LaTeX:  \displaystyle \left(-7,\frac{3}{16}\right)  " data-equation-content=" \displaystyle \left(-7,\frac{3}{16}\right)  " /> . The limit from the left is  <img class="equation_image" title=" \displaystyle \lim_{x \to 9^-}\left(\frac{x + 4}{x - 9}\right) = -\infty " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%209%5E-%7D%5Cleft%28%5Cfrac%7Bx%20%2B%204%7D%7Bx%20-%209%7D%5Cright%29%20%3D%20-%5Cinfty%20" alt="LaTeX:  \displaystyle \lim_{x \to 9^-}\left(\frac{x + 4}{x - 9}\right) = -\infty " data-equation-content=" \displaystyle \lim_{x \to 9^-}\left(\frac{x + 4}{x - 9}\right) = -\infty " /> . The limit from the right is  <img class="equation_image" title=" \displaystyle \lim_{x \to 9^+}\left(\frac{x + 4}{x - 9}\right) = \infty " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%209%5E%2B%7D%5Cleft%28%5Cfrac%7Bx%20%2B%204%7D%7Bx%20-%209%7D%5Cright%29%20%3D%20%5Cinfty%20" alt="LaTeX:  \displaystyle \lim_{x \to 9^+}\left(\frac{x + 4}{x - 9}\right) = \infty " data-equation-content=" \displaystyle \lim_{x \to 9^+}\left(\frac{x + 4}{x - 9}\right) = \infty " /> . This gives the vertical asymptote as  <img class="equation_image" title=" \displaystyle x = 9 " src="/equation_images/%20%5Cdisplaystyle%20x%20%3D%209%20" alt="LaTeX:  \displaystyle x = 9 " data-equation-content=" \displaystyle x = 9 " /> .</p> </p>