Please login to create an exam or a quiz.
Find the vertical asymptote(s) and hole(s) of the rational function \(\displaystyle f(x)=\frac{ x^{2} + 7 x + 6 }{ x^{2} + 2 x - 24 }\)
Factoring gives \(\displaystyle f(x)=\frac{ \left(x + 1\right) \left(x + 6\right) }{ \left(x - 4\right) \left(x + 6\right) }\). The factor \(\displaystyle x + 6\) reduces out. The reduced function is \(\displaystyle f(x) = \frac{x + 1}{x - 4}\). This gives a hole at \(\displaystyle \left(-6,\frac{1}{2}\right) \). The limit from the left is \(\displaystyle \lim_{x \to 4^-}\left(\frac{x + 1}{x - 4}\right) = -\infty\). The limit from the right is \(\displaystyle \lim_{x \to 4^+}\left(\frac{x + 1}{x - 4}\right) = \infty\). This gives the vertical asymptote as \(\displaystyle x = 4\).
\begin{question}Find the vertical asymptote(s) and hole(s) of the rational function $f(x)=\frac{ x^{2} + 7 x + 6 }{ x^{2} + 2 x - 24 }$
\soln{6cm}{Factoring gives $f(x)=\frac{ \left(x + 1\right) \left(x + 6\right) }{ \left(x - 4\right) \left(x + 6\right) }$. The factor $x + 6$ reduces out. The reduced function is $f(x) = \frac{x + 1}{x - 4}$. This gives a hole at $\left(-6,\frac{1}{2}\right) $. The limit from the left is $\lim_{x \to 4^-}\left(\frac{x + 1}{x - 4}\right) = -\infty$. The limit from the right is $\lim_{x \to 4^+}\left(\frac{x + 1}{x - 4}\right) = \infty$. This gives the vertical asymptote as $x = 4$.}
\end{question}
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}
\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}
\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}
\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue
\begin{document}\begin{question}(10pts) The question goes here!
\soln{9cm}{The solution goes here.}
\end{question}\end{document}<p> <p>Find the vertical asymptote(s) and hole(s) of the rational function <img class="equation_image" title=" \displaystyle f(x)=\frac{ x^{2} + 7 x + 6 }{ x^{2} + 2 x - 24 } " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%3D%5Cfrac%7B%20x%5E%7B2%7D%20%2B%207%20x%20%2B%206%20%7D%7B%20x%5E%7B2%7D%20%2B%202%20x%20-%2024%20%7D%20" alt="LaTeX: \displaystyle f(x)=\frac{ x^{2} + 7 x + 6 }{ x^{2} + 2 x - 24 } " data-equation-content=" \displaystyle f(x)=\frac{ x^{2} + 7 x + 6 }{ x^{2} + 2 x - 24 } " /> </p> </p><p> <p>Factoring gives <img class="equation_image" title=" \displaystyle f(x)=\frac{ \left(x + 1\right) \left(x + 6\right) }{ \left(x - 4\right) \left(x + 6\right) } " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%3D%5Cfrac%7B%20%5Cleft%28x%20%2B%201%5Cright%29%20%5Cleft%28x%20%2B%206%5Cright%29%20%7D%7B%20%5Cleft%28x%20-%204%5Cright%29%20%5Cleft%28x%20%2B%206%5Cright%29%20%7D%20" alt="LaTeX: \displaystyle f(x)=\frac{ \left(x + 1\right) \left(x + 6\right) }{ \left(x - 4\right) \left(x + 6\right) } " data-equation-content=" \displaystyle f(x)=\frac{ \left(x + 1\right) \left(x + 6\right) }{ \left(x - 4\right) \left(x + 6\right) } " /> . The factor <img class="equation_image" title=" \displaystyle x + 6 " src="/equation_images/%20%5Cdisplaystyle%20x%20%2B%206%20" alt="LaTeX: \displaystyle x + 6 " data-equation-content=" \displaystyle x + 6 " /> reduces out. The reduced function is <img class="equation_image" title=" \displaystyle f(x) = \frac{x + 1}{x - 4} " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%20%3D%20%5Cfrac%7Bx%20%2B%201%7D%7Bx%20-%204%7D%20" alt="LaTeX: \displaystyle f(x) = \frac{x + 1}{x - 4} " data-equation-content=" \displaystyle f(x) = \frac{x + 1}{x - 4} " /> . This gives a hole at <img class="equation_image" title=" \displaystyle \left(-6,\frac{1}{2}\right) " src="/equation_images/%20%5Cdisplaystyle%20%5Cleft%28-6%2C%5Cfrac%7B1%7D%7B2%7D%5Cright%29%20%20" alt="LaTeX: \displaystyle \left(-6,\frac{1}{2}\right) " data-equation-content=" \displaystyle \left(-6,\frac{1}{2}\right) " /> . The limit from the left is <img class="equation_image" title=" \displaystyle \lim_{x \to 4^-}\left(\frac{x + 1}{x - 4}\right) = -\infty " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%204%5E-%7D%5Cleft%28%5Cfrac%7Bx%20%2B%201%7D%7Bx%20-%204%7D%5Cright%29%20%3D%20-%5Cinfty%20" alt="LaTeX: \displaystyle \lim_{x \to 4^-}\left(\frac{x + 1}{x - 4}\right) = -\infty " data-equation-content=" \displaystyle \lim_{x \to 4^-}\left(\frac{x + 1}{x - 4}\right) = -\infty " /> . The limit from the right is <img class="equation_image" title=" \displaystyle \lim_{x \to 4^+}\left(\frac{x + 1}{x - 4}\right) = \infty " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%204%5E%2B%7D%5Cleft%28%5Cfrac%7Bx%20%2B%201%7D%7Bx%20-%204%7D%5Cright%29%20%3D%20%5Cinfty%20" alt="LaTeX: \displaystyle \lim_{x \to 4^+}\left(\frac{x + 1}{x - 4}\right) = \infty " data-equation-content=" \displaystyle \lim_{x \to 4^+}\left(\frac{x + 1}{x - 4}\right) = \infty " /> . This gives the vertical asymptote as <img class="equation_image" title=" \displaystyle x = 4 " src="/equation_images/%20%5Cdisplaystyle%20x%20%3D%204%20" alt="LaTeX: \displaystyle x = 4 " data-equation-content=" \displaystyle x = 4 " /> .</p> </p>