Please login to create an exam or a quiz.
Use the limit definition of the derivative to find \(\displaystyle f'(x)\) if \(\displaystyle f(x)= \frac{9}{x + 1}\).
Using the difference quotient \(\displaystyle \lim_{h \to 0}\frac{f(x+h)-f(x)}{h}\) gives \(\displaystyle \lim_{h\to 0}\frac{\frac{9}{h + x + 1}-\frac{9}{x + 1}}{h}\) Using the least common denominator, \(\displaystyle (h + x + 1)(x + 1) \), to clear the fractions gives \(\displaystyle \frac{9(x + 1)-9(h + x + 1)}{h(x + 1)(h + x + 1)}\). Expanding gives \(\displaystyle \frac{- 9 h}{h \left(x + 1\right) \left(h + x + 1\right)}\). Factoring out \(\displaystyle h\) and reducing gives \(\displaystyle \lim_{h\to 0}- \frac{9}{\left(x + 1\right) \left(h + x + 1\right)}\). Evaluating the limit gives \(\displaystyle f'(x)=- \frac{9}{\left(x + 1\right)^{2}}\)
\begin{question}Use the limit definition of the derivative to find $f'(x)$ if $f(x)= \frac{9}{x + 1}$. \soln{9cm}{Using the difference quotient $\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}$ gives $\lim_{h\to 0}\frac{\frac{9}{h + x + 1}-\frac{9}{x + 1}}{h}$ Using the least common denominator, $(h + x + 1)(x + 1) $, to clear the fractions gives $\frac{9(x + 1)-9(h + x + 1)}{h(x + 1)(h + x + 1)}$. Expanding gives $\frac{- 9 h}{h \left(x + 1\right) \left(h + x + 1\right)}$. Factoring out $h$ and reducing gives $\lim_{h\to 0}- \frac{9}{\left(x + 1\right) \left(h + x + 1\right)}$. Evaluating the limit gives $f'(x)=- \frac{9}{\left(x + 1\right)^{2}}$} \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Use the limit definition of the derivative to find <img class="equation_image" title=" \displaystyle f'(x) " src="/equation_images/%20%5Cdisplaystyle%20f%27%28x%29%20" alt="LaTeX: \displaystyle f'(x) " data-equation-content=" \displaystyle f'(x) " /> if <img class="equation_image" title=" \displaystyle f(x)= \frac{9}{x + 1} " src="/equation_images/%20%5Cdisplaystyle%20f%28x%29%3D%20%5Cfrac%7B9%7D%7Bx%20%2B%201%7D%20" alt="LaTeX: \displaystyle f(x)= \frac{9}{x + 1} " data-equation-content=" \displaystyle f(x)= \frac{9}{x + 1} " /> . </p> </p>
<p> <p>Using the difference quotient <img class="equation_image" title=" \displaystyle \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bh%20%5Cto%200%7D%5Cfrac%7Bf%28x%2Bh%29-f%28x%29%7D%7Bh%7D%20" alt="LaTeX: \displaystyle \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} " data-equation-content=" \displaystyle \lim_{h \to 0}\frac{f(x+h)-f(x)}{h} " /> gives <img class="equation_image" title=" \displaystyle \lim_{h\to 0}\frac{\frac{9}{h + x + 1}-\frac{9}{x + 1}}{h} " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bh%5Cto%200%7D%5Cfrac%7B%5Cfrac%7B9%7D%7Bh%20%2B%20x%20%2B%201%7D-%5Cfrac%7B9%7D%7Bx%20%2B%201%7D%7D%7Bh%7D%20" alt="LaTeX: \displaystyle \lim_{h\to 0}\frac{\frac{9}{h + x + 1}-\frac{9}{x + 1}}{h} " data-equation-content=" \displaystyle \lim_{h\to 0}\frac{\frac{9}{h + x + 1}-\frac{9}{x + 1}}{h} " /> Using the least common denominator, <img class="equation_image" title=" \displaystyle (h + x + 1)(x + 1) " src="/equation_images/%20%5Cdisplaystyle%20%28h%20%2B%20x%20%2B%201%29%28x%20%2B%201%29%20%20" alt="LaTeX: \displaystyle (h + x + 1)(x + 1) " data-equation-content=" \displaystyle (h + x + 1)(x + 1) " /> , to clear the fractions gives <img class="equation_image" title=" \displaystyle \frac{9(x + 1)-9(h + x + 1)}{h(x + 1)(h + x + 1)} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7B9%28x%20%2B%201%29-9%28h%20%2B%20x%20%2B%201%29%7D%7Bh%28x%20%2B%201%29%28h%20%2B%20x%20%2B%201%29%7D%20" alt="LaTeX: \displaystyle \frac{9(x + 1)-9(h + x + 1)}{h(x + 1)(h + x + 1)} " data-equation-content=" \displaystyle \frac{9(x + 1)-9(h + x + 1)}{h(x + 1)(h + x + 1)} " /> . Expanding gives <img class="equation_image" title=" \displaystyle \frac{- 9 h}{h \left(x + 1\right) \left(h + x + 1\right)} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7B-%209%20h%7D%7Bh%20%5Cleft%28x%20%2B%201%5Cright%29%20%5Cleft%28h%20%2B%20x%20%2B%201%5Cright%29%7D%20" alt="LaTeX: \displaystyle \frac{- 9 h}{h \left(x + 1\right) \left(h + x + 1\right)} " data-equation-content=" \displaystyle \frac{- 9 h}{h \left(x + 1\right) \left(h + x + 1\right)} " /> . Factoring out <img class="equation_image" title=" \displaystyle h " src="/equation_images/%20%5Cdisplaystyle%20h%20" alt="LaTeX: \displaystyle h " data-equation-content=" \displaystyle h " /> and reducing gives <img class="equation_image" title=" \displaystyle \lim_{h\to 0}- \frac{9}{\left(x + 1\right) \left(h + x + 1\right)} " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bh%5Cto%200%7D-%20%5Cfrac%7B9%7D%7B%5Cleft%28x%20%2B%201%5Cright%29%20%5Cleft%28h%20%2B%20x%20%2B%201%5Cright%29%7D%20" alt="LaTeX: \displaystyle \lim_{h\to 0}- \frac{9}{\left(x + 1\right) \left(h + x + 1\right)} " data-equation-content=" \displaystyle \lim_{h\to 0}- \frac{9}{\left(x + 1\right) \left(h + x + 1\right)} " /> . Evaluating the limit gives <img class="equation_image" title=" \displaystyle f'(x)=- \frac{9}{\left(x + 1\right)^{2}} " src="/equation_images/%20%5Cdisplaystyle%20f%27%28x%29%3D-%20%5Cfrac%7B9%7D%7B%5Cleft%28x%20%2B%201%5Cright%29%5E%7B2%7D%7D%20" alt="LaTeX: \displaystyle f'(x)=- \frac{9}{\left(x + 1\right)^{2}} " data-equation-content=" \displaystyle f'(x)=- \frac{9}{\left(x + 1\right)^{2}} " /> </p> </p>