\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus

Please login to create an exam or a quiz.

Calculus
Limits
New Random

Evaluate \(\displaystyle \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}}\)


This is an indeterminate form of the type \(\displaystyle 1^\infty\). Taking the natural logarithm of both sides gives: \begin{equation*} \ln(L) = \ln\left( \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} \right) \end{equation*}Pulling the limit out of the continuous function and using log properties gives: \begin{equation*} \ln(L) = \lim_{x \to \infty}\frac{3 x}{2}\ln\left(1 + \frac{3}{x} \right) \end{equation*}This is an indeterminate form of the type \(\displaystyle 0 \cdot \infty\). Converting it to type \(\displaystyle \frac{0}{0}\) and using L'Hospitials rule gives: \begin{equation*} \ln(L) = \lim_{x \to \infty}\frac{\ln\left(1 + \frac{3}{x}\right)}{\frac{2}{3 x}} = \frac{- \frac{3}{x^{2}}}{- \frac{2}{3 x^{2}}} = \frac{9}{2} \end{equation*}Solving for \(\displaystyle L\) gives \(\displaystyle L = e^{\frac{9}{2}}\)

Download \(\LaTeX\)

\begin{question}Evaluate $\lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}}$
    \soln{9cm}{This is an indeterminate form of the type $1^\infty$. Taking the natural logarithm of both sides gives:
\begin{equation*} \ln(L) = \ln\left( \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} \right) \end{equation*}Pulling the limit out of the continuous function and using log properties gives:
\begin{equation*} \ln(L) = \lim_{x \to \infty}\frac{3 x}{2}\ln\left(1 + \frac{3}{x} \right) \end{equation*}This is an indeterminate form of the type $0 \cdot \infty$. Converting it to type $\frac{0}{0}$ and using L'Hospitials rule gives: 
\begin{equation*} \ln(L) = \lim_{x \to \infty}\frac{\ln\left(1 + \frac{3}{x}\right)}{\frac{2}{3 x}} = \frac{- \frac{3}{x^{2}}}{- \frac{2}{3 x^{2}}} = \frac{9}{2} \end{equation*}Solving for $L$ gives $L = e^{\frac{9}{2}}$}

\end{question}

Download Question and Solution Environment\(\LaTeX\)
\documentclass{article}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage[margin=2cm]{geometry}
\usepackage{tcolorbox}

\newcounter{ExamNumber}
\newcounter{questioncount}
\stepcounter{questioncount}

\newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}}
\renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}}

\newif\ifShowSolution
\newcommand{\soln}[2]{%
\ifShowSolution%
\noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else%
\vspace{#1}%
\fi%
}%
\newcommand{\hideifShowSolution}[1]{%
\ifShowSolution%
%
\else%
#1%
\fi%
}%
\everymath{\displaystyle}
\ShowSolutiontrue

\begin{document}\begin{question}(10pts) The question goes here!
    \soln{9cm}{The solution goes here.}

\end{question}\end{document}
HTML for Canvas
<p> <p>Evaluate  <img class="equation_image" title=" \displaystyle \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} " src="/equation_images/%20%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cleft%281%20%2B%20%5Cfrac%7B3%7D%7Bx%7D%5Cright%29%5E%7B%5Cfrac%7B3%20x%7D%7B2%7D%7D%20" alt="LaTeX:  \displaystyle \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} " data-equation-content=" \displaystyle \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} " /> </p> </p>
HTML for Canvas
<p> <p>This is an indeterminate form of the type  <img class="equation_image" title=" \displaystyle 1^\infty " src="/equation_images/%20%5Cdisplaystyle%201%5E%5Cinfty%20" alt="LaTeX:  \displaystyle 1^\infty " data-equation-content=" \displaystyle 1^\infty " /> . Taking the natural logarithm of both sides gives:
 <img class="equation_image" title="  \ln(L) = \ln\left( \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} \right)  " src="/equation_images/%20%20%5Cln%28L%29%20%3D%20%5Cln%5Cleft%28%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Cleft%281%20%2B%20%5Cfrac%7B3%7D%7Bx%7D%5Cright%29%5E%7B%5Cfrac%7B3%20x%7D%7B2%7D%7D%20%5Cright%29%20%20" alt="LaTeX:   \ln(L) = \ln\left( \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} \right)  " data-equation-content="  \ln(L) = \ln\left( \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{\frac{3 x}{2}} \right)  " /> Pulling the limit out of the continuous function and using log properties gives:
 <img class="equation_image" title="  \ln(L) = \lim_{x \to \infty}\frac{3 x}{2}\ln\left(1 + \frac{3}{x} \right)  " src="/equation_images/%20%20%5Cln%28L%29%20%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%5Cfrac%7B3%20x%7D%7B2%7D%5Cln%5Cleft%281%20%2B%20%5Cfrac%7B3%7D%7Bx%7D%20%5Cright%29%20%20" alt="LaTeX:   \ln(L) = \lim_{x \to \infty}\frac{3 x}{2}\ln\left(1 + \frac{3}{x} \right)  " data-equation-content="  \ln(L) = \lim_{x \to \infty}\frac{3 x}{2}\ln\left(1 + \frac{3}{x} \right)  " /> This is an indeterminate form of the type  <img class="equation_image" title=" \displaystyle 0 \cdot \infty " src="/equation_images/%20%5Cdisplaystyle%200%20%5Ccdot%20%5Cinfty%20" alt="LaTeX:  \displaystyle 0 \cdot \infty " data-equation-content=" \displaystyle 0 \cdot \infty " /> . Converting it to type  <img class="equation_image" title=" \displaystyle \frac{0}{0} " src="/equation_images/%20%5Cdisplaystyle%20%5Cfrac%7B0%7D%7B0%7D%20" alt="LaTeX:  \displaystyle \frac{0}{0} " data-equation-content=" \displaystyle \frac{0}{0} " />  and using L'Hospitials rule gives: 
 <img class="equation_image" title="  \ln(L) = \lim_{x \to \infty}\frac{\ln\left(1 + \frac{3}{x}\right)}{\frac{2}{3 x}} = \frac{- \frac{3}{x^{2}}}{- \frac{2}{3 x^{2}}} = \frac{9}{2}  " src="/equation_images/%20%20%5Cln%28L%29%20%3D%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%5Cfrac%7B%5Cln%5Cleft%281%20%2B%20%5Cfrac%7B3%7D%7Bx%7D%5Cright%29%7D%7B%5Cfrac%7B2%7D%7B3%20x%7D%7D%20%3D%20%5Cfrac%7B-%20%5Cfrac%7B3%7D%7Bx%5E%7B2%7D%7D%7D%7B-%20%5Cfrac%7B2%7D%7B3%20x%5E%7B2%7D%7D%7D%20%3D%20%5Cfrac%7B9%7D%7B2%7D%20%20" alt="LaTeX:   \ln(L) = \lim_{x \to \infty}\frac{\ln\left(1 + \frac{3}{x}\right)}{\frac{2}{3 x}} = \frac{- \frac{3}{x^{2}}}{- \frac{2}{3 x^{2}}} = \frac{9}{2}  " data-equation-content="  \ln(L) = \lim_{x \to \infty}\frac{\ln\left(1 + \frac{3}{x}\right)}{\frac{2}{3 x}} = \frac{- \frac{3}{x^{2}}}{- \frac{2}{3 x^{2}}} = \frac{9}{2}  " /> Solving for  <img class="equation_image" title=" \displaystyle L " src="/equation_images/%20%5Cdisplaystyle%20L%20" alt="LaTeX:  \displaystyle L " data-equation-content=" \displaystyle L " />  gives  <img class="equation_image" title=" \displaystyle L = e^{\frac{9}{2}} " src="/equation_images/%20%5Cdisplaystyle%20L%20%3D%20e%5E%7B%5Cfrac%7B9%7D%7B2%7D%7D%20" alt="LaTeX:  \displaystyle L = e^{\frac{9}{2}} " data-equation-content=" \displaystyle L = e^{\frac{9}{2}} " /> </p> </p>