\(\text{www.the}\beta\text{etafunction.com}\)
Home
Login
Questions: Algebra BusinessCalculus
Please login to create an exam or a quiz.
Find the derivative of \(\displaystyle F(x) = \int\limits_{\ln{\left(x \right)}}^{0} \frac{1}{t^{2}}\, dt\).
Before using the Fundamental Theorem of Calculus part I the limits of integration must be reversed by using a property of integrals. This gives \(\displaystyle F(x) = - \int\limits_{0}^{\log{\left(x \right)}} \frac{1}{t^{2}}\, dt\). Now using the Fundamental Theorem of Calculus part I and the chain rule with \(\displaystyle u=\ln{\left(x \right)}\) and \(\displaystyle F(u)=- \int\limits_{0}^{u} \frac{1}{t^{2}}\, dt\) gives: \(\displaystyle F'(x)=\frac{dF}{du}\frac{du}{dx} = \left(- \frac{1}{u^{2}}\right)\left(\frac{1}{x}\right)=- \frac{1}{x \log{\left(x \right)}^{2}}\)
\begin{question}Find the derivative of $F(x) = \int\limits_{\ln{\left(x \right)}}^{0} \frac{1}{t^{2}}\, dt$. \soln{9cm}{Before using the Fundamental Theorem of Calculus part I the limits of integration must be reversed by using a property of integrals. This gives $F(x) = - \int\limits_{0}^{\log{\left(x \right)}} \frac{1}{t^{2}}\, dt$. Now using the Fundamental Theorem of Calculus part I and the chain rule with $u=\ln{\left(x \right)}$ and $F(u)=- \int\limits_{0}^{u} \frac{1}{t^{2}}\, dt$ gives: $F'(x)=\frac{dF}{du}\frac{du}{dx} = \left(- \frac{1}{u^{2}}\right)\left(\frac{1}{x}\right)=- \frac{1}{x \log{\left(x \right)}^{2}}$} \end{question}
\documentclass{article} \usepackage{tikz} \usepackage{amsmath} \usepackage[margin=2cm]{geometry} \usepackage{tcolorbox} \newcounter{ExamNumber} \newcounter{questioncount} \stepcounter{questioncount} \newenvironment{question}{{\noindent\bfseries Question \arabic{questioncount}.}}{\stepcounter{questioncount}} \renewcommand{\labelenumi}{{\bfseries (\alph{enumi})}} \newif\ifShowSolution \newcommand{\soln}[2]{% \ifShowSolution% \noindent\begin{tcolorbox}[colframe=blue,title=Solution]#2\end{tcolorbox}\else% \vspace{#1}% \fi% }% \newcommand{\hideifShowSolution}[1]{% \ifShowSolution% % \else% #1% \fi% }% \everymath{\displaystyle} \ShowSolutiontrue \begin{document}\begin{question}(10pts) The question goes here! \soln{9cm}{The solution goes here.} \end{question}\end{document}
<p> <p>Find the derivative of <img class="equation_image" title=" \displaystyle F(x) = \int\limits_{\ln{\left(x \right)}}^{0} \frac{1}{t^{2}}\, dt " src="/equation_images/%20%5Cdisplaystyle%20F%28x%29%20%3D%20%5Cint%5Climits_%7B%5Cln%7B%5Cleft%28x%20%5Cright%29%7D%7D%5E%7B0%7D%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%7D%5C%2C%20dt%20" alt="LaTeX: \displaystyle F(x) = \int\limits_{\ln{\left(x \right)}}^{0} \frac{1}{t^{2}}\, dt " data-equation-content=" \displaystyle F(x) = \int\limits_{\ln{\left(x \right)}}^{0} \frac{1}{t^{2}}\, dt " /> . </p> </p>
<p> <p>Before using the Fundamental Theorem of Calculus part I the limits of integration must be reversed by using a property of integrals. This gives <img class="equation_image" title=" \displaystyle F(x) = - \int\limits_{0}^{\log{\left(x \right)}} \frac{1}{t^{2}}\, dt " src="/equation_images/%20%5Cdisplaystyle%20F%28x%29%20%3D%20-%20%5Cint%5Climits_%7B0%7D%5E%7B%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%7D%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%7D%5C%2C%20dt%20" alt="LaTeX: \displaystyle F(x) = - \int\limits_{0}^{\log{\left(x \right)}} \frac{1}{t^{2}}\, dt " data-equation-content=" \displaystyle F(x) = - \int\limits_{0}^{\log{\left(x \right)}} \frac{1}{t^{2}}\, dt " /> . Now using the Fundamental Theorem of Calculus part I and the chain rule with <img class="equation_image" title=" \displaystyle u=\ln{\left(x \right)} " src="/equation_images/%20%5Cdisplaystyle%20u%3D%5Cln%7B%5Cleft%28x%20%5Cright%29%7D%20" alt="LaTeX: \displaystyle u=\ln{\left(x \right)} " data-equation-content=" \displaystyle u=\ln{\left(x \right)} " /> and <img class="equation_image" title=" \displaystyle F(u)=- \int\limits_{0}^{u} \frac{1}{t^{2}}\, dt " src="/equation_images/%20%5Cdisplaystyle%20F%28u%29%3D-%20%5Cint%5Climits_%7B0%7D%5E%7Bu%7D%20%5Cfrac%7B1%7D%7Bt%5E%7B2%7D%7D%5C%2C%20dt%20" alt="LaTeX: \displaystyle F(u)=- \int\limits_{0}^{u} \frac{1}{t^{2}}\, dt " data-equation-content=" \displaystyle F(u)=- \int\limits_{0}^{u} \frac{1}{t^{2}}\, dt " /> gives: <img class="equation_image" title=" \displaystyle F'(x)=\frac{dF}{du}\frac{du}{dx} = \left(- \frac{1}{u^{2}}\right)\left(\frac{1}{x}\right)=- \frac{1}{x \log{\left(x \right)}^{2}} " src="/equation_images/%20%5Cdisplaystyle%20F%27%28x%29%3D%5Cfrac%7BdF%7D%7Bdu%7D%5Cfrac%7Bdu%7D%7Bdx%7D%20%3D%20%5Cleft%28-%20%5Cfrac%7B1%7D%7Bu%5E%7B2%7D%7D%5Cright%29%5Cleft%28%5Cfrac%7B1%7D%7Bx%7D%5Cright%29%3D-%20%5Cfrac%7B1%7D%7Bx%20%5Clog%7B%5Cleft%28x%20%5Cright%29%7D%5E%7B2%7D%7D%20" alt="LaTeX: \displaystyle F'(x)=\frac{dF}{du}\frac{du}{dx} = \left(- \frac{1}{u^{2}}\right)\left(\frac{1}{x}\right)=- \frac{1}{x \log{\left(x \right)}^{2}} " data-equation-content=" \displaystyle F'(x)=\frac{dF}{du}\frac{du}{dx} = \left(- \frac{1}{u^{2}}\right)\left(\frac{1}{x}\right)=- \frac{1}{x \log{\left(x \right)}^{2}} " /> </p> </p>